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ABSTRACT
More and more Android apps implement their functionalities in
native code, so does malware. Although various approaches have
been designed to analyze the native code used by apps, they usually
generate incomplete and biased results due to their limitations in
obtaining and analyzing high-fidelity execution traces and memory
data with low overheads. To fill the gap, in this paper, we propose
and develop a novel hardware-assisted analyzer for native code in
apps. We leverage ETM, a hardware feature of ARM platform, and
eBPF, a kernel component of Android system, to collect real execu-
tion traces and relevant memory data of target apps, and design new
methods to scrutinize native code according to the collected data.
To show the unique capability of NCScope, we apply it to four ap-
plications that cannot be accomplished by existing tools, including
systematic studies on self-protection and anti-analysis mechanisms
implemented in native code of apps, analysis of memory corruption
in native code, and identification of performance differences be-
tween functions in native code. The results uncover that only 26.8%
of the analyzed financial apps implement self-protection methods in
native code, implying that the security of financial apps is far from
expected. Meanwhile, 78.3% of the malicious apps under analysis
have anti-analysis behaviors, suggesting that NCScope is very use-
ful to malware analysis. Moreover, NCScope can effectively detect
bugs in native code and identify performance differences.
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1 INTRODUCTION
Android continuously dominates the smartphone market with over
70% share [53]. A recent study [91] showed that about 40% benign
apps use native code for implementing advanced functionalities
or achieving better performance. Sumaya et al. disclosed that na-
tive code has been widely used in very popular apps [56]. Many
guidelines [28, 37] also suggest that security-sensitive apps (e.g.,
mobile banking apps) should implement self-protection techniques
in native code to prevent them from running in rooted devices
and being tampered. Meanwhile, researchers discovered that ma-
licious apps always abuse native code to perform anti-analysis
[55, 88, 90, 94, 99, 102]. Therefore, tools for analyzing native code
in apps are highly demanded for researchers to characterize apps
using native code, for store maintainers to uncover unwanted activi-
ties implemented in native code, and for app developers to diagnose
bugs and performance issues.

However, it is challenging to analyze native code in Android
apps. On the one hand, the complexity of native code [69] and the
adopted dynamic features (e.g., dynamically loading) [63, 66, 79,
81] impede the static analysis of native code. On the other hand,
although a number of dynamic analysis approaches have been
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designed for inspecting native code in apps, they usually generate
incomplete and biased results due to their limitations in obtaining
and analyzing high-fidelity execution traces and memory data with
low overheads. More precisely, the majority of existing dynamic
analysis approaches rely on three kinds of underlying techniques,
including debugger [100], dynamic binary instrumentation (DBI)
frameworks [96], and emulator [55, 88, 93, 94, 99]. Unfortunately,
these techniques have the following limitations that negatively
affect the analysis of native code.

First, it is difficult for these techniques to collect all executed
instructions in an accurate and efficient manner because DBI and
emulator may incorrectly recognize and emulate instructions as re-
vealed by recent studies[68, 80, 83] while debuggers can only access
an instruction through the single-step method [13]. Consequently,
behaviors of native code may be missed due to the incomplete in-
struction traces. Second, these techniques can be easily defeated by
anti-analysis methods in native code[95] because of their obvious
footprints. For example, debuggers change status of the debugged
process, DBI loads extra libraries and code to the app’s memory,
and emulator has special files and properties different from real sys-
tems (see §4.3). Note that malicious apps will hide their behaviors
once they discover the existence of dynamic analysis tools. Third,
these underlying techniques introduce significant overhead, which
leads to biased profiling results. For instance, DBI and emulator
based tools [82, 94, 96, 99] cause more than 10x slowdown. Such
a slowdown has been exploited by malware to detect these tools
through timing checks [43].

To overcome the aforementioned limitations, we propose a novel
hardware-assisted analyzer named NCScope for native code in An-
droid apps. Specifically, exploiting ETM (Embedded Trace Micro-
cell), a hardware feature of ARM platform, we collect the executed
ARM instructions of the app running in real device instead of em-
ulators without the need of DBI frameworks or software-based
debuggers. Note that the overhead of collecting ARM instructions
through ETM is very low (around zero [2]). Meanwhile, we use
eBPF (Extended Berkeley Packet Filter), a kernel component of An-
droid system introduced since Android 9.0, to efficiently obtain the
memory data used by the app. Moreover, we design new methods
to identify the behaviors of native code from the collected informa-
tion by recovering the run-time function calls and data flow. Since
NCScope achieves efficient instruction tracing and memory data
retrieving, the evaluation results (in §5.1) show that it introduces
very low additional overhead (1.180x slowdown on average) to the
execution of apps, and it can bypass timing checks [43]. Based on
the collected data, users can develop analysis methods for charac-
terizing native code in apps.

To demonstrate the unique capability of NCScope, we equip it
with new analysis methods for four applications ( 1 – 4 ) that
cannot be accomplished by existing tools. We first use it to conduct
systematic studies on 1 self-protection behaviors of financial apps
(§5.2) and 2 anti-analysis behaviors of malicious apps (§5.3). Then,
we use NCScope to 3 detect memory corruption caused by CWE-
416 (use-after-free) and CWE-415 (double-free) (§5.4), which cannot
be diagnosed from the exceptions raised by Android system, and to
4 identify the performance differences between functions used in
native code (§5.5).

In summary, we make the following contributions:

• We propose NCScope, a new hardware-assisted analyzer for
native code in apps. It outperforms existing approaches in terms
of effectiveness, efficiency, evasion resilience, and overhead. The
artifacts of NCScope is available at DOI 10.5281/zenodo.6534525.

• We design new methods for NCScope to detect self-protection
and anti-analysis methods and diagnose memory corruption in
native code by recovering run-time function calls and data flow
from the collected instruction traces and memory data.

• We extensively evaluate NCScope and use it to conduct system-
atic studies on the native code based self-protection methods
adopted by financial apps and the anti-analysis mechanisms
used by malicious apps. The results show that NCScope intro-
duces very small additional overhead. Moreover, it discovers
that a few (26.8%) of financial apps implement self-protection
methods whereas most (78.3%) of malicious apps under exam-
ination implement anti-analysis methods in their native code.
We also apply NCScope to detect memory corruption in native
code of apps to show that it can aid bug diagnosis and present a
case study to show that NCScope can aid performance analysis.

2 BACKGROUND
In this section, we introduce the background knowledge about ETM
in §2.1 and eBPF in §2.2.

2.1 Embedded Trace Microcell
Embedded Trace Microcell (ETM) is a hardware feature of ARM
platform. It tracks the instructions executed by CPU via monitoring
instruction buses with almost no overhead [16]. When tracing the
executed instructions of a running app through ETM, it generates
trace elements, which contain the information (e.g., target addresses
of executed branch instructions of the target app) for recovering
the app’s run-time execution traces, and outputs them as an ETM
stream. Among the trace elements, we mainly resolve the Address
element because it stores the address of each tracked instruction,
which will be used to recover the app’s run-time behaviors (§4). Ac-
cording to Futuremark [8], all of the most popular 50 smartphones
are equipped with the ARM processors that support ETM.

2.2 Extended Berkeley Packet Filter
Extended Berkeley Packet Filter (eBPF) is a lightweight and secure
in-kernel virtual machine for executing eBPF programs [17]. An
eBPF program can hook a kernel instruction by using the kernel
probe (kprobe) infrastructure [25] or a kernel tracepoint by using
the event tracing infrastructure [47]. Once the target instruction is
being executed, the corresponding eBPF program will be executed
to perform analyst-specified operations, e.g., getting a register value
or retrieving the memory data. Besides supporting the kernel in-
strumentation, an eBPF program can hook user-space programs
through the user-space probe (uprobe) [45]. Since Android 9.0, both
the kprobe and uprobe are supported by Android system. As bcc
[10] provides convenient programming interfaces to customize
eBPF programs, we use it to develop eBPF programs.

https://doi.org/10.5281/zenodo.6534524
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Figure 1: The architecture of NCScope.

3 OVERVIEW OF NCSCOPE
As shown in Figure 1, NCScope consists of two modules: an ARMv8
based data collection module running an Android system (>=9.0)
loaded with eBPF programs, and an analysis module implementing
various new analysis methods. The rational of this two-module
architecture is to minimize the additional overhead. That is, we
let ARM platform only perform data collection (i.e., recording the
instruction trace and retrieving the in-memory data) while leave
data resolution (i.e., behavior identification) to the analysis module,
which runs in a separate PC.

Taking in and launching an app to be analyzed, NCScope instructs
ETM to record the instructions executed by the app (see §3.1) and
invoke eBPF programs to retrieve the data from the app’s virtual
memory and save it to a memory region resided in the kernel-space
(see §3.2). Note that since the kernel configurations used for en-
abling eBPF (e.g., CONFIG_KPROBES, CONFIG_UPROBES) have already
been turned on in the recently released Android systems (since An-
droid 9.0), NCScope requires no modification to Android kernel.
When the execution of native code ends, the data collection module
outputs the instruction trace (e.g., ETM stream) and the memory
data collected by eBPF to the analysis module for accomplishing
various tasks, such as identifying self-protection and anti-analysis
behaviors of native code (see §4.2 and §4.3), diagnosing memory
corruption bugs (see §4.4), and measuring performance (see §5.5).
Assumption. We assume that the apps to be analyzed cannot gain
the root privilege. That is, the apps can neither disable eBPF nor
load a kernel module that inspects the values of the registers used
for configuring ETM to detect the presence of NCScope. This as-
sumption is rational because Android has already adopted various
techniques to protect the integrity of its kernel [41], and smart-
phone vendors have also employed many approaches [48] to secure
the kernels of their customized Android systems.

In this section, we describe the data collection module, including
how NCScope traces the executed instructions of an app (see §3.1)
and retrieves the accessed data from its virtual memory (see §3.2),
because such run-time data can be leveraged to characterize its
behaviors[64]. The analysis module will be described in §4.

3.1 Tracing Instructions
NCScope uses ETM to trace an app’s executed instructions. By de-
fault, ETM records the target address of each indirect branch in-
struction executed by CPU. However, it is non-trivial to recover the
app’s behaviors from such an ETM stream due to two reasons. (1)
The ETM stream contains a large amount of trace elements that are
irrelevant to the analyzed app, because the target addresses of all

Table 1: A summary of registers used for configuring ETM.

ETM Registers Field Description

TRCACVR0/TRCACVR1
(Address Comparator Value Registers)

ADDRESS
Set the virtual memory range
for branch broadcast tracing

TRCBBCTLR
(Branch Broadcast Control Register)

RANGE
Set the address range comparator
pair for branch broadcast tracing

TRCCIDCCTLR0
(Context ID Comparator Control Register)

COMP0
Enforce Context ID comparison
with relevant byte in TRCCIDCVR0

TRCCIDCVR0
(Context ID Comparator Value Register)

VALUE
Set PID to be compared

with during Context ID tracing

TRCCONFIGR
(Trace Configuration Register)

CID Validate context ID tracing
BB Validate broadcast tracing

TRCIDR0
(ID Register)

TRCBB
Examine whether branch

broadcast tracing is supported

indirect branch instructions executed by CPU will be recorded. (2)
The ETM stream contains only the target address of each executed
indirect branch instruction. To recover the function calls performed
by the app, which is essential for recovering its behaviors, the target
address of each executed direct branch instruction is also needed,
because the execution of such an instruction may refer to a method
invocation. To address these issues, NCScope enables the context
ID tracing and branch broadcasting tracing of ETM. Table 1 lists
the ETM registers used for enabling and configuring the tracing.
We elaborate how NCScope adjusts these ETM registers as follows.

Note that, although the ARM platform provides an on-chip buffer
for storing ETM stream, its capacity is insufficient (64KB at most
[62]) to store the stream. Therefore, NCScope uses DSTREAM [6], a
dedicated off-chip device with a 4GB buffer, to store ETM stream.
• Context ID Tracing. NCScope enables the context ID tracing so
that ETM just traces the instructions executed by the process of
app under analysis. Specifically, it sets the CID field of TRCCONFIGR
to 0x1, assigns the target app’s PID to the TRCCIDCVR0, and adjusts
the COMP0 field of TRCCIDCCTLR0 to 0x1.
• Branch Broadcast Tracing. To record the target address of each
executed direct branch instruction, NCScope enables branch broad-
cast tracing of ETM by setting the BB field of TRCCONFIGR to 0x1. To
specify the memory range for branch broadcast tracing, NCScope
assigns 0x0 and 0x7fffffffff to the ADDRESS field of TRCACVR0/1, and
sets the RANGE field of TRCBBCTLR to 0x1.

3.2 Collecting Memory Data
The instruction trace alone is insufficient for native code analysis.
For example, without the value referenced by the first parameter
of the function open defined in the system library libc.so, we
cannot know the file accessed by the app. Hence, NCScope leverages
eBPF to collect the app’s memory data at run-time, especially the
parameter values of system functions called by the app. As shown in
Fig. 1, NCScope is equipped with several eBPF programs to instruct
Android kernel to collect the app’s in-memory data. In the following,
we introduce how NCScope retrieves the memory data.
• Retrieving Memory Data. NCScope instructs eBPF with the
eBPF programs to hook multiple system functions for getting their
parameter values at run-time. Since parameters can use pointers to
access the data in memory, NCScope takes two steps to retrieve the
referenced values. First, to fetch the data, NCScope obtains the base
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address that stores the data in memory. Specifically, NCScope uses
PT_REGS_PARM*, a series of macros provided by the kernel [33], to
get the parameter value, which is the base address of the memory
data. Second, since the data is stored at the base address obtained
in the first step, NCScope fetches the data from the base address.
Specifically, NCScope sends the base address to bpf_probe_read,
an interface provided by bcc for instructing eBPF to read the bytes
starting from the based address. For instance, to obtain the path
of file accessed by calling open, in the first step, NCScope uses
PT_REGS_PARM1 to get open’s first parameter value, which is the
base address of the file path string. Then, in the second step, relying
on the base address, NCScope uses bpf_probe_read to retrieve the
in-memory file path string.
• Storing Memory Data. The parameter values of system func-
tions retrieved by eBPF will be saved in the kernel-space virtual
memory [11]. In particular, we address the following two problems
related to storing the data collected by eBPF.

First, since system functions are usually defined in shared li-
braries (e.g., libc.so), they will be invoked by different apps. There-
fore, the retrieved memory data may contain the parameter values
of system functions called by other apps instead of the app under
analysis. Since the memory data accessed by other apps is irrelevant
for analyzing the native code of the app under analysis and will
make NCScope wrongly treat behaviors of other apps as behaviors
of the app under analysis, we need to filter out them. To achieve this
purpose, NCScope marks the source (i.e., PID) of the data retrieved
by eBPF, so that NCScope can find the memory data related to the
app under analysis according to the app’s PID in the analysis mod-
ule. Specifically, NCScope lets eBPF programs record the PID value
when getting the parameter values of system functions by using
bpf_get_current_pid_tgid, an interface provided by bcc, and
saves it along with the retrieved data to the kernel-space memory.

Second, since the memory data accessed by the app forms a
sequence according to the execution order of the system functions
called by the app, and such sequence provides useful information for
identifying specific behaviors (see §4.2 and §4.3), we add timestamps
to the data retrieved by eBPF and then order the obtained memory
data according to their timestamps. In detail, our eBPF programs call
the bcc interface bpf_ktime_get_ns to get the time when they are
run by eBPF to retrieve the system functions’ parameter values, and
saves it along with the retrieved data to the kernel-space memory.

4 ANALYSIS MODULE OF NCSCOPE
To bridge the semantic gap between the raw data (i.e., the collected
ETM stream and memory data) and the high-level semantic infor-
mation (e.g., function calls and data flow) required for native code
analysis [55], NCScope recovers run-time function calls (see §4.1)
and data flow (see §4.4) in the app’s native code from the raw data.
In §4.2-§4.4, we introduce how NCScope detects self-protection
and anti-analysis mechanisms implemented in native code, and
diagnoses use-after-free and double-free bugs in native code. §4.5
introduces how to extend NCScope with new analysis functionality.

4.1 Recovering Run-Time Function Calls
NCScope resolves the ETM stream to find the system functions (in-
cluding Android framework APIs and system library functions)

that have been called by the app at run-time because they provide
the necessary semantic information for native code analysis. Since
existing tools (e.g., ptm2human [7], ds-5 [5]) cannot accomplish this
task, we develop a new ETM stream resolver for NCScope. It first
constructs the mapping from each instruction address to the cor-
responding system function for determining the system functions
called by the app from the traced instruction stream. Then, from
the constructed mapping, it finds the system functions called by the
app according to the Address elements stored in the ETM stream.
More details are presented as follows.
• Constructing Instruction-Function Mapping. To determine
the system functions called by the app from the instruction ad-
dresses tracked by ETM, NCScope first constructs a mapping be-
tween system functions and the addresses of their instructions
by analyzing the memory map of the app and the disassembled
information of system libraries and framework OAT files.

In detail, NCScope gets the memory map information about the
loaded system libraries and framework OAT files from the memory
map (i.e., /proc/pid/maps) of the app. From the obtained memory
map information, NCScope finds the start address 𝑉𝑚 of each exe-
cutable memory region for calculating the address of each instruc-
tion mapped in the virtual memory. Then, NCScope uses objdump
[31] and oatdump [30] to disassemble system libraries and frame-
work OAT files, respectively, in order to extract the file offset 𝐹𝑖
of each instruction. Since an instruction’s file offset 𝐹𝑖 and its vir-
tual offset 𝑉𝑖 can be different, we further calculate the difference
𝛿 between the two offsets through Equation (1). Specifically, for
instructions in the system library, NCScope uses objdump to get the
virtual memory offset𝑉𝑡 and the file offset 𝐹𝑡 of the library’s .text
section. For instructions in the framework OAT file, NCScope uses
oatdump to get the file offset 𝐹𝑜 of the OAT file’s .oatexec section.
After 𝛿 is calculated, NCScope uses Equation (2) to get the address
𝑉𝑖 of each instruction mapped in the virtual memory.

𝛿 =

{
𝐹𝑡 −𝑉𝑡 ( 𝑠𝑦𝑠𝑡𝑒𝑚 𝑙𝑖𝑏𝑟𝑎𝑟𝑦 )
0 − 𝐹𝑜 ( 𝑓 𝑟𝑎𝑚𝑒𝑤𝑜𝑟𝑘 𝑂𝐴𝑇 𝑓 𝑖𝑙𝑒 ) (1)

𝑉𝑖 = 𝑉𝑚 + ( 𝐹𝑖 + 𝛿 ) (2)

For example, to calculate the virtual address (𝑉𝑖 ) of the first in-
struction of the system function __android_log_print defined
in the system library liblog.so to build the mapping between 𝑉𝑖
and __android_log_print. In particular, from the memory map
file of the app, we find that the executable section (i.e., .text sec-
tion) of liblog.so is mapped in the virtual memory 0x700148f000
(𝑉𝑚). Then, we use objdump to get the disassembled information
about liblog.so, including the file offset of the first instruction
of __android_log_print 0x7c38 (𝐹𝑖 ), the virtual memory offset
of .text section of liblog.so 0x4758 (𝑉𝑡 ), and the file offset of
.text section of liblog.so 0x4758 (𝐹𝑡 ). According to Equations
(1) and (2), we calculate𝑉𝑖 =𝑉𝑚 + (𝐹𝑖 + 𝐹𝑡 -𝑉𝑡 ) = 0x7001496c38 and
get an entry of the instruction-function mapping 0x7001496c38 ->
__android_log_print.
• Finding System Functions Called. Since the ETM stream
records the virtual addresses of instructions executed by the app at
run-time, relying on the instruction-functionmapping, NCScope can
recover the app’s run-time function calls by mapping instruction
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addresses recorded in the ETM stream to system functions. Specifi-
cally, NCScope gets the virtual address of the tracked instruction
from each Address element recorded in the ETM stream. Since the
Address element uses its right-most bit to record the instruction set
of the tracked instruction [16], NCScope parses the remaining bits
to get the virtual address of the instruction. Then, NCScope queries
the instruction-function mapping to check whether the recorded
instruction address is associated with a system function. For exam-
ple, to decide whether the app has called __android_log_print
at run-time, we first check if the instruction-function mapping has
the entry 0x7f12345678 ↦→ __android_log_print, because we rely
on this mapping relationship to determine whether the function is
called. If that is the case, 0x7f12345678 is the virtual address of an
instruction in __android_log_print. Then, NCScope resolves the
addresses of instructions tracked by ETM. If we find that the address
of an instruction tracked by ETM is 0x7f12345678, according to the
entry of the instruction-function mapping, we can determine that
__android_log_print is called by the app at run-time.
• Determining System Function Called by Native Code. Since
system functions can be invoked by either Java code or native
code of the app, NCScope further determines the functions called by
native code. Since an app can have two types of native functions, i.e.,
JNI_OnLoad called by the system when loading native libraries and
other common native functions called by the app’s JNI functions
[52], we introduce how NCScope determines the system functions
called by these two types of native functions as follows.
⊲ JNI_OnLoad. Since JNI_OnLoad is called by the system function
JavaVMExt::LoadNativeLibrary defined in the system library
libart.so, NCScope leverages this observation to find the sys-
tem functions executed by JNI_OnLoad. Specifically, NCScope uses
the start address 𝐿𝑠 of LoadNativeLibrary and the address 𝐿𝑒 of
the instruction in LoadNativeLibrary, to which JNI_OnLoad re-
turns, to divide the instruction trace. The system functions appear
between a pair of 𝐿𝑠 and 𝐿𝑒 are those called by JNI_OnLoad.

To find the parameter values of system functions called by
JNI_OnLoad from the data retrieved by eBPF, NCScope uses eBPF
programs to hook 𝐿𝑠 and 𝐿𝑒 to get their timestamps𝑇𝑠 and𝑇𝑒 , which
indicate when these two instructions are executed. Relying on the
timestamps, NCScope gets the time slots for executing JNI_OnLoad.
The memory data obtained within the time slots are the parameter
values of system functions called by JNI_OnLoad.
⊲ Common Native Functions. The app’s common native func-
tions, excluding JNI_OnLoad, can only be accessed by the app’s JNI
functions. Since Android framework invokes the system function
art::artQuickGenericJniTrampoline defined in the system li-
brary libart.so before the execution of each JNI function and then
invokes the function art::artQuickGenericJniEndTrampoline
after the execution of the JNI function, NCScope leverages this ob-
servation to find the system functions executed by common na-
tive functions. More specifically, NCScope uses the start address
𝐽𝑠 of artQuickGenericJniTrampoline and the start address 𝐽𝑒
of artQuickGenericJniEndTrampoline to divide the instruction
trace. The system functions found between 𝐽𝑠 and 𝐽𝑒 are those
called by the app’s common native functions.

Similarly, to find the parameter values of system functions called
by the app’s common native functions, NCScope uses eBPF programs
to hook 𝐽𝑠 and 𝐽𝑒 to get the time slots for executing the app’s

common native functions. The in-memory data obtained within the
time slots are the parameter values of the system functions called
by the app’s common native functions.

4.2 Detecting Self-Protection Methods
We investigate self-protection methods that can be implemented in
native code by studying the code snippets presented in the guide-
lines [32] and Github repositories [34, 35, 38]. Eventually, we collect
10 self-protection methods in 2 types, including root detection and
tampering detection. For each method, we design a detection rule
for NCScope to identify it. Table 2 summarizes these rules, where
the symbol FUNC(f) indicates that the system function f is found
in the recovered system functions called by the app’s native code,
and ARGx(f) denotes that NCScope uses eBPF to record the value
of function f ’s xth parameter. It is worth noting that although we
try our best to collect as many self-protection methods as possi-
ble, we do not claim that the rules in Table 2 are comprehensive.
Instead, we use them to demonstrate the usage of NCScope in iden-
tifying commonly-used self-protection methods implemented in
native code. We describe how to add new rules for discovering new
self-protection methods in §4.5.
• Root Detection (RTD). Since attackers can gain control of apps
running in rooted devices, security-sensitive apps employ the fol-
lowing RTD methods to avoid running in rooted devices [60, 61, 71].
⊲ RTD-1: Apps look for the executable files (e.g. /system/xbin/su)
or APKs (e.g., /system/app/Superuser.apk) used for gaining or
managing the root privilege from the file system, because these
files are typically found on rooted devices [32]. However, if names
of these files are obfuscated, RTD-1 will fail.
⊲ RTD-2:Apps check whether the shell command su can be executed,
because this command is typically existed in rooted systems [32].
However, if the name of the command is changed, RTD-2 will fail.
⊲ RTD-3:Apps examine whether the apps used for rooting the device
(e.g., KingRoot [26]) or managing the root-privilege (e.g., Superuser
[39]) have been installed on the device, because these apps are
typically installed on rooted devices [32]. However, if names of
these apps are obfuscated, RTD-3 will fail.
⊲ RTD-4: Apps execute the command mount to inspect whether the
permissions of mounted system directories (e.g., /system/xbin)
are writable, because writable permissions on system directories
usually indicate rooted devices [32].
⊲ RTD-5: Apps check the system’s build tag [32], because it indicates
whether the system is a custom ROM that is commonly rooted [15].
⊲ RTD-6: Apps examine special system properties (e.g., ro.secure),
because they indicate whether the systems are rooted [32].
⊲ RTD-7: Apps execute the shell command ps to find whether dae-
mon services of rooting apps (e.g., daemonsu [40]) are running,
because these services are typically running on rooted devices [32].
However, if names of these services are obfuscated, RTD-7 will fail.
Detection methods. RTD-1: Since the libc functions, including
access, open, or stat, can be invoked to check files’ existence,
NCScope records the values of their first parameters, which store
the file paths, and then inspects the obtained paths to find whether
the app searched for rooting related executable files or APKs.
RTD-2: Native code can call either execvp or execvpe exported by
libc.so to execute the shell command. Thus, NCScope records the
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Table 2: The rules used by NCScope to identify self-protection behaviors.

Type Id Rules Notes

RTD

1 (1) ARG1(libc.open) == “/system/xbin/su” (or paths of rooting apps “/system/app/Superuser.apk”) or ARG1(libc.access), ARG1(libc.stat)
2 (1) ARG1(libc.execvp) == “su” (or the paths of the su file) or ARG1(libc.execvpe)
3 (1) ARG1(libc.strstr) == “superuser” (or other names of rooting apps) or ARG2(libc.strstr)

4 (1) ARG1(libc.execvp) == “mount” or ARG1(libc.execvpe)
(2) ARG1(libc.strstr) == “/system/xbin” (or other system directories) or ARG2(libc.strstr)

5
(1) ARG2(libart.FindClass) == “android/os/Build”
(2) ARG3(libart.GetStaticFieldID) == “TAGS”
(3) ARG1(libc.strstr) == “test-keys” or ARG2(libc.strstr)

6 (1) ARG1(libc.__system_property_get) == “ro.debuggable” (or “ro.secure”)

7 (1) ARG1(libc.execvp) == “ps” or ARG1(libc.execvpe)
(2) ARG1(libc.strstr) == “daemonsu” (or the paths of rooting apps) or ARG2(libc.strstr)

TPD

1 (1) ARG2(libart.FindClass) == “android/content/pm/PackageInfo”
(2) ARG3(libart.GetFieldID) == “signatures”

2
(1) ARG2(libart.NewStringUTF) == “classes.dex” or ARG2(libart.NewString)
(2) FUNC(java.util.zip.ZipFile.<init>)
(3) FUNC(java.util.zip.ZipEntry.getCrc)

3 (1) FUNC(android.content.pm.PackageManager.getInstallerPackageName)
(2) ARG1(libc.strstr) == “com.android.vending” (or package names of other app installers) or ARG2(libc.strstr)

1 Note that, since strcmp, strcasecmp, strncmp, strncasecmp and strstr have quite similar functionalities, any one of them can be replaced by the others.

first parameter values of these functions, which store the executed
shell commands, to see whether su was executed by the app.
RTD-3: Since the libc functions, including strcmp, strcasecmp,
strncmp, strncasecmp, or strstr, can be called to conduct the
string comparison, the app can use any of them to find rooting re-
lated apps in the string list that stores the paths of the installed apps.
Hence, NCScope records the parameter values of these functions.
RTD-4: NCScope analyzes parameters of functions for shell command
execution and string comparison to see whether the app retrieved
and examined permissions of mounted system directories.
RTD-5: To access the field of a Java class or a Java object in native
code, the app will call the libart functions art::JNI::FindClass
and art::FindFieldID. Based on this observation, NCScope ob-
tains the values of the second parameter of FindClass and the
third parameter of FindFieldID, which store the names of the Java
class and field, to see whether the app accessed the TAGS field of
the Java class android.os.Build to get the build tag of system.
RTD-6: The function __system_property_get defined in libc.so
can be called to access and get the values of system properties.
Accordingly, NCScope records the value of this function’s first pa-
rameter, which provides the name of the system property. Then,
from the obtained values, NCScope finds whether the system prop-
erties, the values of which disclose that the system is a custom one,
were accessed by the app.
RTD-7: NCScope inspects parameters of the functions for shell com-
mand execution and string comparison to see whether the app
examined the names of running processes to find the daemon ser-
vices of rooting apps.
• Tampering Detection (TPD). Since repackaging is a major
threat to the app ecosystem [74, 85], apps usually employ the fol-
lowing TPD methods to protect themselves from being tampered.
⊲ TPD-1:Apps obtain their signatures to detect repackaging, because
original apps and repackaged apps have different signatures [32].
⊲ TPD-2: Apps perform the cyclic redundancy check (CRC) over
their Dex files to check whether they have been tampered, because
original apps and tampered apps have different CRC [32].

⊲ TPD-3: Apps examine their installers [59] to prevent them from
being installed from suspicious sources (e.g., third-party markets),
because suspicious sources are flooded with repackaged apps [101].
Detection methods. TPD-1: Since the field signatures of the app’s
PackageInfo object stores the app’s signature, NCScope checks the
parameter values of FindClass and FindFieldID to see whether
this field was accessed by the app.
TPD-2: The app can use JNI reflection to invoke the framework APIs
ZipFile.<init> and ZipEntry.getCrc to calculate the CRC of its
Dex files. Accordingly, NCScope analyzes the functions called by
the app’s native code to see whether these APIs were invoked. Since
the names of Dex files are passed to the second parameter of the
functions NewStringUTF or NewString defined in libart.so dur-
ing the calculation, NCScope inspects parameters of these functions
to ensure that CRC was conducted over the app’s Dex files.
TPD-3: Since the method getInstallerPackageName of the class
PackageManager can be used to get the package name of the app’s
installer, NCScope analyzes the system function calls to see whether
the API was invoked by the app. Then, NCScope retrieves and in-
spects the parameter values of the functions for string compari-
son to find whether the package names of legal app markets (e.g.,
“com.android.vending” for Google Play store) are compared with
the package name of the app’s installer.

4.3 Detecting Anti-Analysis Mechanisms
We examine anti-analysis mechanisms that can be implemented in
native code by referring to the code segments and technical details
in the research papers [63, 73, 79, 95], whitepapers [29, 32], and
Github repositories [3, 4] and collect 12 anti-analysis mechanisms
in 5 types, including debugger detection, emulator detection, DBI
framework detection, timing check, and dynamic code loading. For
each mechanism, we design a detection rule for NCScope to identify
it. Table 3 lists these rules. It is worth noting that although we try
our best to collect as many anti-analysis mechanisms as possible,
we do not claim that the rules in Table 3 are complete. Instead,
we use them to demonstrate the ability of NCScope in identifying
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widely-used anti-analysis mechanisms implemented in native code.
In the following, we present these anti-analysis mechanisms and
how NCScope detects them. We describe how to add new rules for
discovering new anti-analysis mechanisms in §4.5.
• Debugger Detection (DBD). Apps usually use the following DBD
mechanisms to detect the presence of debuggers to prevent it from
being analyzed by them [32, 63, 73, 95].
⊲ DBD-1: Apps leverage JNI reflection to call the framework API
Debug.isDebuggerConnected, because it is commonly used to de-
tect JDWP-based debuggers [32, 95].
⊲ DBD-2: Apps inspect the content of its process status files (i.e.,
/proc/pid/status or /proc/self/status), because the content
indicates whether ptrace based debuggers have attached [63, 73].
⊲ DBD-3: Apps check the system property debug.atrace.tags.en-
ableflags, because it indicates the presence of ftrace [46].
Detection methods. DBD-1: NCScope analyzes the system functions
called by the app’s native code to determine whether the function
Debug.isDebuggerConnected was invoked.
DBD-2: From the parameter values of open and the functions for
string comparison, NCScope finds out whether the app opened its
process status file and searched “TracerPid:” in the file content to
detect the presence of ptrace based debuggers.
DBD-3: NCScope examines parameters of __system_property_get
to see whether the ftrace associated system property was accessed.
• Emulator Detection (EMD). Since many dynamic analysis tools
[88, 94, 99] are built upon Android emulator (e.g., QEMU), apps usu-
ally adopt the following EMD mechanisms to detect the presence of
emulators to avoid being analyzed in such environments [32, 63, 95].
⊲ EMD-1: Apps check the content of special system files (e.g., /proc/t-
ty/drivers), because it is specially introduced by emulators [63, 95].
⊲ EMD-2: Apps inspect the existence of system properties (e.g.,
init.svc.qemud) that are introduced by emulators [95].
⊲ EMD-3: Apps call the APIs (e.g., getSubscriberId) defined in
TelephonyManager and check their return values (e.g., 3102600000-
00000), because these values are specially used in emulators [32].
Detection methods. EMD-1: NCScope analyzes the parameter values
of open and the functions for string comparison to see whether the
app accessed and inspected the content of particular system files to
find the data introduced by emulators.
EMD-2: NCScope examines parameters of __system_property_get
to discover whether the app checked the presence of special system
properties introduced by emulators.
EMD-3: NCScope checks the recovered system function calls to see
whether the TelephonyManager APIs were invoked. Then, it in-
spects the parameter values of the functions for string comparison
to examine whether the return values of these APIs were compared
with those from emulators.
• DBI Framework Detection (DFD). To prevent being instru-
mented, apps usually adopt the following DFDmechanisms to detect
DBI frameworks [32, 95].
⊲ DFD-1: Since DBI frameworks load several artifacts (e.g., .so files)
to memory, apps examine the memory map (i.e., /proc/pid/maps)
to look for such artifacts [32, 95].
⊲ DFD-2: Since DBI frameworks will open specific TCP ports (e.g.,
TCP port 27042 is opened and used by frida [19]) to communicate
with their controllers running on other devices, apps can execute
the shell command netstat or ss to check such opened ports [32].

Detection methods. DFD-1: NCScope analyzes the parameter values
of open to see whether the app accessed its memory map file. Then,
NCScope dissects the parameter values of the functions for string
comparison to determine whether the app searched suspicious
strings (e.g., “frida", “xpose”) to find the memory mapped artifacts.
DFD-2: NCScope inspects the parameter values of the functions for
shell command execution and string comparison to see whether
the app retrieved and examined the network states to find the TCP
ports opened by DBI frameworks.
• Timing Check (TCK). Since dynamic analysis tools slowdown
the execution of apps [29, 32], apps can compute the time spent
on executing a special task [89] to infer the presence of dynamic
analysis tools. Commonly, apps can call the function time or
gettimeofday defined in libc.so to get the time value (i.e., TCK-1).
Detection method. TCK-1: To calculate the time consumption of a
task, gettimeofday or time will be called at least twice, one for
getting the task’s start time and the other for getting the task’s
end time. Based on this observation, NCScope examines the system
functions called by the app’s native code to find whether the system
functions for getting the time were continuously called.
• Dynamic Code Loading (DCL). To prevent the code from being
reverse engineered by static analysis tools [21, 44, 57, 84], apps
usually hide their critical code in APKs and dynamically load them
tomemory before execution. Commonly, there are three approaches
for apps to load the bytecode or native code at run-time [63, 79, 95].
⊲ DCL-1:Apps leverage JNI reflection to call the framework APIs (e.g.,
DexClassLoader.<init>, DexPathList.makePathElements, and
DexFile.loadDex) for loading extra Dex files dynamically [79, 95].
⊲ DCL-2: Apps call mmap defined in libc.so to apply for writable
and executable memory regions by setting the third parameter of
mmap to 0x5 [42, 63] to store the loaded native code.
⊲ DCL-3:Apps call mprotect defined in libc.so to give the writable
property to executable but non-writable memory regions by setting
the third parameter of mprotect to 0x4 [54, 63], so that native code
can be loaded into such memory regions.
Detection methods. DCL-1: NCScope inspects recovered function
calls to check whether the APIs for loading Dex files were called.
DCL-2: NCScope gets the third parameter value of mmap, which spec-
ifies the property of the applied memory region. From the retrieved
values, NCScope determines whether the app applied for writable
and executable memory regions to store the released native code.
DCL-3: NCScope obtains the third parameter value of mprotect,
which indicates the property given to the memory region. Then,
NCScope inspects the obtained values to find whether the app gave
the writable property to memory regions.

4.4 Diagnosing Memory Corruption Bugs
NCScope can diagnose two types of memory corruption bugs in
the app’s native code, including CWE-416 (use-after-free) [51] and
CWE-415 (double-free) [50], by recovering its run-time data flow.
In particular, with the run-time execution trace (i.e., ETM stream),
NCScope employs offline symbolic execution [76, 97] to recover the
app’s run-time data flow. Note that, we implement this module by
adapting the existing work [97], targeting at x86 platform, to ARM.
• Offline Symbolic Execution. Taking in the initial program
state (including registers, stack, and heaps) and the execution trace
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Table 3: The rules used by NCScope to identify anti-analysis behaviors.

Type Id Rules Notes

DBD

1 (1) FUNC(android.os.Debug.isDebuggerConnected)

2 (1) ARG1(libc.open) == “/proc/pid/status” (or “/proc/self/status”)
(2) ARG1(libc.strstr) == “TracerPid:” or ARG2(libc.strstr)

3 (1) ARG1(libc.__system_property_get) == “debug.atrace.tags.enableflags”

EMD

1 (1) ARG1(libc.open) == “/proc/tty/driver”
(2) ARG1(libc.strncmp) == “goldfish” or ARG2(libc.strncmp)

2 (1) ARG1(libc.__system_property_get) == “init.svc.qemud” (or other system properties introduced by QEMU)

3 (1) FUNC(android.telephony.TelephonyManager.getSubscriberId) (or other TelephonyManager APIs)
(2) ARG1(libc.strcmp) == “310260000000000” (or other suspicious values) or ARG2(libc.strcmp)

DFD

1 (1) ARG1(libc.open) == “/proc/pid/map” (or “/proc/self/maps”)
(2) ARG1(libc.strstr) == “frida” (or other typical strings in the names of files related to DBI frameworks) or ARG2(libc.strstr)

2 (1) ARG1(libc.execvp) == “netstat” (or “ss”) or ARG1(libc.execvpe)
(2) ARG1(libc.strcmp) == “27042” (or other TCP port numbers used by DBI frameworks) or ARG2(libc.strcmp)

TCK 1 (1) FUNC(libc.gettimeofday) (see §4.3 for more details) or FUNC(libc.time)

DCL

1 (1) FUNC(dalvik.system.DexClassLoader.<init>) (or other functions for loading the Dex files DexFile.loadDex)
2 (1) ARG3(libc.mmap) & 0x5 == 0x5
3 (1) ARG3(libc.mprotect) & 0x4 == 0x4

1 Note that, since strcmp, strcasecmp, strncmp, strncasecmp and strstr have quite similar functionalities, any one of them can be replaced by the others.

Table 4: The measurement on the additional overhead incurred by NCScope.

Integer Score Floating Point Score Memory Score Overall Score Start-up Time
Mean STD Slowdown Mean STD Slowdown Mean STD Slowdown Mean STD Slowdown Mean STD Slowdown

Baseline 1114.6 3.6 1.000x 777.0 7.5 1.000x 1606.4 11.1 1.000x 1087.3 4.2 1.000x 2.50 0.06 1.000x

NProfiler𝑖𝑛𝑠 1100.2 8.7 1.013x 777.0 4.6 1.000x 1601.7 16.8 1.003x 1079.7 4.7 1.007x 2.51 0.06 1.004x
NProfiler𝑚𝑒𝑚 766.8 3.5 1.455x 774.5 3.0 1.003x 1567.4 10.5 1.025x 925.4 1.3 1.175x 2.94 0.04 1.176x
NProfiler𝑖𝑛𝑠+𝑚𝑒𝑚 765.9 4.8 1.455x 770.2 6.6 1.009x 1556.9 4.1 1.032x 921.2 2.5 1.180x 3.00 0.02 1.200x

DroidScope𝑖𝑛𝑠 25.2 3.0 44.230x 16.4 2.3 47.378x 136.6 3.6 11.760x 43.4 2.8 25.053x 43.82 2.38 17.528x
DroidScope𝑖𝑛𝑠+𝑚𝑒𝑚 12.5 1.5 89.168x 10.8 1.1 71.944x 83.9 5.8 19.147x 25.9 1.9 41.981x 118.39 5.08 47.356x

recorded at run-time, offline symbolic execution recovers the run-
time data flow by tracking data values alongside each instruction in
the execution trace. For the data (e.g., return values of system calls)
that cannot be inferred from the initial program state, they will be
symbolized and then propagated through the execution trace.

Specifically, since the run-time execution flow of the app’s native
code is recorded in the ETM stream, to apply the offline symbolic
execution to recover the run-time data flow, NCScope leverages
eBPF to retrieve the initial program state just before the execu-
tion of native code. In detail, since the execution flow of the app’s
native code begins with the start address of LoadNativeLibrary
or artQuickGenericJniTrampoline (see §4.1), NCScope uses eBPF
programs to hook these addresses to obtain the register values and
the in-memory data of the app’s stack and heaps. Note that, we
observe that every app’s stack will be stored in a fixed virtual mem-
ory region. Based on this observation, we get the address and size
of stack via any running app’s memory map and instruct eBPF to
retrieve the data in stack. Meanwhile, since the app invokes alloca-
tion functions (e.g., malloc defined in libc.so) [27] or the system
call mmap [42] to apply for heaps, NCScope uses eBPF programs to
hook these functions to get the addresses and sizes of allocated
heaps, and then instructs eBPF to retrieve the data in heaps.

• Use-after-free and Double-free Detection. During the offline
symbolic execution, NCScope monitors all calls to memory alloca-
tion functions and free functions (e.g., free defined in libc.so)
[27], and saves the allocated and freed buffers to an allocation list

and a free list, respectively. More precisely, when a memory allo-
cation call is reached, the size argument 𝑃𝑠𝑖𝑧𝑒 is extracted and the
symbolized address pointer 𝑃𝑎𝑑𝑑𝑟𝑒𝑠𝑠 (referring to the address of the
allocated buffers) is assigned with a concrete value, and the entry
<𝑃𝑎𝑑𝑑𝑟𝑒𝑠𝑠 , 𝑃𝑠𝑖𝑧𝑒> is saved to the allocation list. When a free call is
reached, the address pointer parameter (referring to the address
of the freed buffers) is extracted and the corresponding entry is
moved from the allocation list to the free list. To detect use-after-
free, for each instruction in the execution flows, addresses accessed
by memory operations are checked against the free list. If existed,
a use-after-free bug is found. To detect double-free, for each call to
free functions, addresses of the freed buffers are checked against
the free list. If existed, a double-free bug is found.

4.5 Extending NCScope
•Adding new rules for detecting self-protectionmethods and
anti-analysis mechanisms. Analysts can perform three steps to
add new rules for detecting new self-protection methods and/or
anti-analysis mechanisms. First, according to the implementations
of the new self-protection methods or anti-analysis mechanisms,
analysts decide the necessary system functions and parameter val-
ues that can be used for detecting them. Second, if the necessary
parameter values of the system functions have not been recorded
(i.e., they are not included in Table 2), NCScope takes in the eBPF
programs written by analysts or re-use our developed eBPF pro-
grams to instruct eBPF to record such memory data. Third, to detect
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the new self-protection methods or anti-analysis mechanisms, from
the function calls recovered by NCScope, analysts can find whether
the necessary system functions are called. Meanwhile, from the
memory data recorded by NCScope, analysts inspect whether the
necessary parameter values of system functions are accessed.
• Diagnosing new memory corruption bugs. Analysts can ex-
tend this module to diagnose new memory corruption bugs by
introducing new detection rules (e.g., those introduced in the exist-
ing work [97]) when performing offline symbolic execution.
• Adding new functionality. Analysts can add new functionality
to NCScope by extending the analysis module to inspect system
functions called and memory data accessed by native code of apps
at run-time. Specifically, since NCScope can recover all the system
functions called by native code of apps (see §4.1), analysts just need
to customize eBPF programs, which are then taken by NCScope to
instruct eBPF to retrieve the needed memory data. Since bcc [10]
provides convenient APIs for writing eBPF programs, our experi-
ences show that it is non-difficult to extend NCScope with new
functionality. Our source code [49] can be used as a reference.

5 EVALUATION
We implement the prototype of NCScope with about 7k lines of
Java code and 3k lines of C/Python code based on: ds-5 [5], a tool
for retrieving the ETM stream from ARM platform; adeb [1], a tool
that provides interfaces for accessing the functionalities of eBPF;
and ARCUS [97], a tool for conducting offline symbolic execution.
NCScope is deployed on a Juno r2 development board [24], running
an Android 9.0 system with the 4.14.59 Android common kernel.
We evaluate the performance and functionalities of NCScope by
answering the following five research questions (RQs).
RQ1: How is the overhead incurred by NCScope?
RQ2: How prevalent are self-protection behaviors implemented in
native code of financial Android apps?
RQ3: How prevalent are anti-analysis behaviors implemented in
native code of Android malware?
RQ4: Can NCScope assist the diagnose of memory corruption bugs
in the app’s native code?
RQ5: Can NCScope assist the analysis on the performance of the
app’s native code?

5.1 RQ1: Overhead
The extra overhead introduced by NCScope comes from two aspects:
tracing the executed instructions (using ETM); and retrieving the
in-memory data (leveraging eBPF). In Table 4, we use the symbols
𝑖𝑛𝑠 and𝑚𝑒𝑚 to denote the two operations, respectively. For each
operation, we run the native code tests provided by the benchmark
app Geekbench [20] 10 times to measure the performance impact
of the operation. Specifically, we calculate the average of integer
scores, floating point scores, memory scores, and overall scores
assessed by Geekbench, and record the benchmark app’s average
start-up time in seconds. We also calculate the performance scores
when both of the operations and none of the operations are con-
ducted by NCScope, respectively, and the latter is treated as the
baseline. Note that, a higher score denotes a better performance.
Result: Table 4 shows the results, where the Slowdown column
provides the times of slowdown brought by NCScope. We observe

that ETM (i.e., instruction tracing) will not slowdown the execu-
tion of app under analysis, and eBPF (i.e., memory data retrieving)
only brings 1.175x slowdown to the overall score. When both the
instruction tracing and memory data retrieving are conducted by
NCScope, it just causes 1.180x slowdown to the overall score.

We further compare the performance of NCScope with Droid-
Scope [99], a widely adopted emulator based dynamic app analysis
platform that can perform the same operations (i.e., instruction trac-
ing and memory data retrieving) as NCScope. The PC for running
DroidScope is equipped with Intel i7-6700k CPU and 64GB RAM.
Note that, since DroidScope conducts memory data retrieving to-
gether with instruction tracing, we do not separately measure the
performance impact of memory data retrieving. According to the
results, we see that either of instruction tracing and memory data
retrieving of DroidScope bring obvious slowdown so that it can-
not evade timing checks. When both the operations are conducted,
DroidScope causes 41.981x slowdown to the overall score, indicat-
ing that DroidScope incurs much more slowdown than NCScope.

Answer to RQ1: NCScope introduces very small additional over-
head to the execution of app under analysis.

5.2 RQ2: Prevalence of Self-Protection Methods
Data Set: We download more than 900 randomly selected financial
apps from Google Play and pick out 500 samples that have native
code, including 170 mobile banking apps, 152 digital wallet apps, 21
money transfer apps, 41 cryptocurrency apps, 31 personal loan apps,
20 insurance apps, and 65 stock trading apps. We apply NCScope
to profile the self-protection behaviors implemented in the app’s
native code. It is worth noting that, we have manually run these
financial apps on a rooted device and discovered that all of them
cannot properly be launched and run on such the device, which im-
plies that all of these apps will immediately execute self-protection
methods (i.e., root detection) when they have been launched.

Table 5: A summary of identified self-protection behaviors.

Behavior #app Ratio Behavior #app Ratio

RTD-1 77 15.4% RTD-6 2 0.4%

RTD-2 105 21.0% RTD-7 13 2.6%

RTD-3 2 0.4% TPD-1 9 1.8%

RTD-4 56 11.2% TPD-2 1 0.2%

RTD-5 0 0.0% TPD-3 0 0.0%

Result: Table 5 shows the results, where #app denotes the number
of financial apps that implement a specific self-protection behavior
in their native code, and Ratio indicates the ratio of financial apps
that implement a specific self-protection method in the evaluation.

Specifically, we discover that only 134 (26.8%) financial apps
under analysis implement at least one self-protection method in
their native code, which implies that the security of financial apps
is far from expected. Moreover, 130 apps adopt root detection meth-
ods to prevent them from running in rooted devices, and RTD-1,
RTD-2, and RTD-4 are the mostly adopted self-protection methods.
However, only 10 (2%) financial apps under examination implement
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tampering detection methods in native code, which suggests that
the remaining apps are under the risk of repackaging attacks [70].
Precision & Recall: To assess the performance of NCScope in iden-
tifying the app’s self-protection behaviors in native code, we down-
load 20 randomly selected open-source apps from F-Droid [18],
which implement neither self-protection nor anti-analysis methods.
Applying NCScope to these apps, no self-protection behaviors are
found, which indicates that there is no false positives. Moreover, we
randomly select 20 financial apps that implement self-protection
methods in their native code. By disassembling their native code, we
manually analyze the obtained ARM instructions and find that each
self-protection behavior is correctly detected by NCScope. That is,
there is no false negatives.

Answer to RQ2: NCScope can precisely identify the app’s self-
protection behaviors in native code. It finds that only 26.8% of
the evaluated financial apps implement self-protection methods
in native code, implying that their security is far from expected.

5.3 RQ3: Prevalence of Anti-Analysis Methods
Data Set: We obtain 450 malicious apps from a security company
and find that 300 of them have native code and can properly run on
NCScope. We apply NCScope to profile their anti-analysis behaviors
implemented in native code.

Table 6: A summary of identified anti-analysis behaviors.

Behavior #app Ratio Behavior #app Ratio

DBD-1 2 0.7% DFD-1 1 0.3%

DBD-2 225 75.0% DFD-2 0 0.0%

DBD-3 0 0.0% TCK-1 226 75.3%

EMD-1 1 0.3% DCL-1 234 78.0%

EMD-2 1 0.3% DCL-2 15 5.0%

EMD-3 1 0.3% DCL-3 21 7.0%

Result: Table 6 presents the detailed results on profiling the anti-
analysis behaviors of the malicious apps under analysis.

Specifically, NCScope identifies 235 (78.3%) malicious apps that
implement anti-analysis methods in their native code, implying
that Android malware commonly have anti-analysis behaviors.
Meanwhile, we discover that DBD-2, TCK-1, and DCL-1 are the top-
three adopted anti-analysis methods. TCK-1 can impede the analysis
of existing dynamic app debugging, monitoring, or profiling tools
(e.g., DroidScope) as they cause significant slowdown. NCScope can
evade TCK-1 because it introduces very small additional overhead.
Moreover, DCL-1 can hinder static analysis approaches as they do
not take the dynamically released code into analysis. However,
NCScope can help analysts capture the code released at run-time.
Therefore, NCScope is very useful to malware analysis.Wemanually
inspect the native code of malware with anti-analysis behaviors
and find that they are heavily obfuscated, making it extremely hard
for manual inspection. Hence, we use the apps from F-Droid and
the apps developed by us to further evaluate NCScope as follows.
Precision & Recall: To assess the precision and the recall in detect-
ing anti-analysis behaviors in native code, we reuse the 20 F-Droid

apps in §5.2. Applying NCScope to these apps, no anti-analysis be-
haviors are detected, suggesting that there is no false positives.
Moreover, since it is non-trivial and time-consuming to manually
analyze the native code of malware due to heavy code obfusca-
tion, we first randomly select 10 malware samples that implement
anti-analysis methods in their native code. Then, after disassem-
bling their native code, we manually inspect the obtained ARM
instructions and find that each anti-analysis behavior is successfully
detected by NCScope. That is, there is no false negatives.

Answer to RQ3: NCScope can precisely identify anti-analysis be-
haviors in native code. It finds that at least 78.3% of the evaluated
malware implements anti-analysis methods in native code.

5.4 RQ4: Memory Corruption Diagnosis
Data Set: From NIST C/C++ Juliet suite [23], a collection of open-
source test cases for CWEs, we adapt 20 buggy and 40 bug-free test
cases for CWE-416 (use-after-free) and CWE-415 (double-free) to
60 Android apps’ native code. Then, we apply NCScope to diagnose
memory corruption bugs in these apps’ native code.
Result: NCScope identifies all use-after-free and double-free bugs
in native code of the apps under evaluation with no false positives
and false negatives, indicating that it can precisely diagnose these
memory corruption bugs in the app’s native code. It is worth noting
that, since use-after-free and double-free bugs may not crash the
app [22], no exceptions will be raised by Android system so that
these bugs cannot be diagnosed by analyzing the exceptions.

To demonstrate NCScope’s capability of diagnosing memory cor-
ruption bugs in real-world apps, we apply NCScope to an F-Droid
app [9], whose library libpl_droidsonroids_gif.so is vulnera-
ble to CVE-2019-11932 [12]. NCScope correctly finds out that the
vulnerability is caused by double-free.

Answer to RQ4: NCScope can aid memory corruption diagnosis
by identifying use-after-free and double-free in native code.

5.5 RQ5: Performance Analysis
We conduct a case study to show the usefulness of NCScope to
performance analysis of native code. NCScope finds out that to write
a large amount of data to a file using the system function fwrite
costs less time than using write [14], both of which are defined
in libc.so. To compare the performance of the two functions, we
develop an app with two JNI functions 𝐹𝑓 𝑤𝑟𝑖𝑡𝑒 and 𝐹𝑤𝑟𝑖𝑡𝑒 , which
call fwrite and write, respectively. In each JNI function, the app
opens an empty file, writes 𝑛 (256) bytes data to the file for 𝑡 (1,000)
times, and then closes the file. As introduced in §4.1, since NCScope
records the timestampswhen the app starts to execute a JNI function
(𝑇𝑠 ) and exits from the same JNI function (𝑇𝑒 ), we compute the
execution time of a JNI function via the formula 𝑇𝑒 - 𝑇𝑠 . We run
the app 10 times and discover that the average execution time of
𝐹𝑓 𝑤𝑟𝑖𝑡𝑒 is 2.63 milliseconds, while the average execution time of
𝐹𝑤𝑟𝑖𝑡𝑒 is 16.72 milliseconds. From the results, we notice that fwrite
has a better performance than write in this case.



NCScope: Hardware-Assisted Analyzer for Native Code in Android Apps ISSTA ’22, July 18–22, 2022, Virtual, South Korea

Analysis: With the retrieved run-time information, NCScope can
aid analysts to find out the root cause of the performance difference.
Specifically, from the recovered functions called by 𝐹𝑓 𝑤𝑟𝑖𝑡𝑒 , we
find that fwrite internally calls write, and 𝐹𝑓 𝑤𝑟𝑖𝑡𝑒 calls write 63
times in total. Meanwhile, from the retrieved parameter values of
write, we discover that, each of the prior 62 function calls to write
adds 4,096 bytes to the file, whereas the last one adds 2,048 bytes
to the file. From the recovered functions called by 𝐹𝑤𝑟𝑖𝑡𝑒 , we find
that 𝐹𝑤𝑟𝑖𝑡𝑒 calls write 1,000 times, and each function call to write
adds 256 bytes to the file. Since 𝐹𝑓 𝑤𝑟𝑖𝑡𝑒 uses less function calls to
complete the same task, it has a better performance than 𝐹𝑤𝑟𝑖𝑡𝑒 .
Biased Measurement Results from Emulator: The overhead in-
troduced by emulator-based app performance profiling tools [93]
leads to biased measurement results. To evaluate the noise brought
by the emulator to the performance measurement, we re-run the
app 10 times on the emulator provided by Android Studio [36]
and calculate the execution time of the two JNI functions. More
precisely, we call gettimeofday at the very beginning and the end
of each JNI function to get the start time (𝑇 ′

𝑠 ) and end time (𝑇 ′
𝑒 ) of

the JNI function. Then, we compute the execution time of the JNI
function via 𝑇 ′

𝑒 - 𝑇 ′
𝑠 . We discover that the average execution time

of 𝐹𝑓 𝑤𝑟𝑖𝑡𝑒 and 𝐹𝑤𝑟𝑖𝑡𝑒 is 45.67 and 387.52 milliseconds, which are
almost 20x bigger than those calculated by NCScope. Such observa-
tion suggests that NCScope can help analysts collect accurate data
for performance analysis of native code.

Answer to RQ5: NCScope can aid performance analysis on na-
tive code by collecting the accurate data with little noise.

6 THREAT TO VALIDITY
Threats to the external validity of NCScope come from three aspects.

First, due to the intrinsic problem of dynamic analysis, NCScope
may not trigger all instructions of the apps under analysis, and
thus it may miss the behaviors that have not been executed. To
mitigate this problem, we will apply automated app testing tools
(e.g., Sapienz [75], Stoat [86], Fax [98]) to drive the execution of
apps. In addition, we can customize targeted execution tools (e.g.,
IntelliDroid [92]) to drive the app to execute native functions. More-
over, we only study the native code based self-protection and anti-
analysis behaviors in 500 financial apps and 300 malicious apps,
respectively. In future work, we will enlarge our dataset and extend
NCScope to identify more behaviors of native code.

Second, NCScopemay miss new self-protection and anti-analysis
behaviors whose detection rules are not include. To mitigate this
threat, in future work, we will collect or design more rules to detect
new self-protection methods and anti-analysis mechanisms.

Third, apps might detect NCScope via side-channels to evade
the analysis. In future work, we will carefully optimize the code of
NCScope to eliminate such side-channels as many as possible.

7 RELATEDWORK
Various work has been proposed to analyze native code of apps.
Owning to the complexity of native code [69], there are only a
few static analysis based approaches. JN-SAF [91] and George et
al. [67] statically analyze the native code to discover data leakage,

command execution, and JNI reflection. LibRARIAN [56] statically
builds libraries’ identities by extracting strings in their native code.
ATADetector [59] detects DBD, EMD, and DFDmethods in native code.
Due to the limitation of static analysis in handling dynamically
loaded code, analysts may resort to dynamic analysis based tools.

However, existing dynamic app analysis tools have limitations
on analyzing native code. Specifically, since DroidScope [99], Cop-
perDroid [88], AndroidPerf [93], NDroid [94], and others [55] are
built upon QEMU, they cannot analyze the anti-analysis apps with
EMD behaviors. TaintDroid [65], TaintART [87], ARTist [58], and
MERCIDroid [72] introduce significant overhead as they perform
heavy-weight operations (e.g., information flow tracking) on apps,
and thus they cannot analyze the anti-analysis apps with TCK be-
haviors. DroidTrace [100] and Malton [96] use ptrace and the DBI
framework Valgrind [77], respectively, to analyze apps. Therefore,
they are impeded by DBD or DFD behaviors. Ninja [78] and Happer
[95] use ETM to trace apps and hardware breakpoints to retrieve
memory data. However, neither of them is designed to profile be-
haviors of native code and they do not recover data flow. Moreover,
due to the limited number of breakpoints, they have limitations in
retrieving memory data.

Different from existing approaches, NCScope leverages ETM and
eBPF to collect data and employs newmethods to identify behaviors
of native code. Thus, it will neither be hindered by DBD, EMD, DFD
nor suffer from the problems incurred by the limitation of hard-
ware breakpoints. Since NCScope introduces very low additional
overhead, it can inspect the apps with TCK.

8 CONCLUSION
To analyze apps with native code, we propose NCScope, a novel
hardware-assisted analyzer that collects execution traces via ETM
and relevant memory data via eBPF and is equipped with new meth-
ods to inspect native code with very low additional overhead. Using
NCScope, we conduct systematic studies on native code based self-
protection methods and anti-analysis methods in financial apps and
malicious apps, respectively, and observe that financial apps are not
well protected but malware adopts various anti-analysis methods.
Moreover, NCScope can aid memory corruption bug diagnosis and
performance analysis for apps’ native code.
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