
Uncovering Intent based Leak of Sensitive Data in Android
Framework

Hao Zhou
The Hong Kong Polytechnic University

Hong Kong, China
cshaoz@comp.polyu.edu.hk

Xiapu Luo∗
The Hong Kong Polytechnic University

Hong Kong, China
csxluo@comp.polyu.edu.hk

Haoyu Wang
Huazhong University of Science and Technology

Wu Han, China
haoyuwang@hust.edu.cn

Haipeng Cai
Washington State University
Pullman, Washington, USA

haipeng.cai@wsu.edu

ABSTRACT
To prevent unauthorized apps from retrieving the sensitive data,
Android framework enforces a permission based access control.
However, it has long been known that, to bypass the access control,
unauthorized apps can intercept the Intent objects which are sent
by authorized apps and carry the retrieved sensitive data. We find
that there is a new (previously unknown) attack surface in Android
framework that can be exploited by unauthorized apps to violate the
access control. Specifically, we discover that part of Intent objects
that are sent by Android framework and carry sensitive data can
be received by unauthorized apps, resulting in the leak of sensitive
data. In this paper, we conduct the first systematic investigation on
the new attack surface namely the Intent based leak of sensitive
data in Android framework. To automatically uncover such kind of
vulnerability in Android framework, we design and develop a new
tool named LeakDetector, which finds the Intent objects sent by
Android framework that can be received by unauthorized apps and
carry the sensitive data. Applying LeakDetector to 10 commercial
Android systems, we find that it can effectively uncover the Intent
based leak of sensitive data in Android framework. Specifically, we
discover 36 exploitable cases of such kind of data leak, which can be
abused by unauthorized apps to steal the sensitive data, violating
the access control. At the time of writing, 16 of them have been
confirmed by Google, Samsung, and Xiaomi, and we received bug
bounty rewards from these mobile vendors.

CCS CONCEPTS
• Security and privacy→Mobile platform security.

KEYWORDS
Android; Static Analysis; Intent; Vulnerability

∗The corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00
https://doi.org/10.1145/3548606.3560601

ACM Reference Format:
Hao Zhou, Xiapu Luo, Haoyu Wang, and Haipeng Cai. 2022. Uncovering
Intent based Leak of Sensitive Data in Android Framework. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’22), November 7–11, 2022, Los Angeles, CA, USA. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3548606.3560601

1 INTRODUCTION
Smartphones have become an inseparable part of our daily lives,
and they have access to a great deal of sensitive sensor data (e.g.,
GPS coordinates), private user data (e.g., contacts), and personal
identifiable information (e.g., IMEI) [55]. To prevent these sensitive
data from being retrieved by unauthorized apps, Android employs
a permission based access control [24, 28, 29, 57, 63]. Specifically,
Android provides sensitive framework APIs for apps to retrieve
the sensitive data, and the APIs enforce permission check on their
calling apps to examine whether the apps have been granted with
the required permissions to retrieve the sensitive data. Only the
authorized apps, having gained the necessary permissions, can
successfully call framework APIs to retrieve the sensitive data.

However, it has long been known that unauthorized apps can
abuse Intent [3], an inter-process communication mechanism, to
violate the permission based access control in Android framework
and result in the leakage of sensitive data to unauthorized apps
[30, 31, 34, 41, 44, 45, 49, 58, 60]. In detail, as shown in Figure 1,
the authorized app, having gained the required permissions, calls
sensitive framework APIs to retrieve the sensitive data and then uses
Intent to send out the retrieved sensitive data. If the Intent object
carrying the sensitive data can be received by the unauthorized
app, then the unauthorized app can get the sensitive data without
the need of requesting and gaining the required permissions. In
this scenario, since the Intent object carrying the sensitive data is
sent by apps, we call it the Intent based leak of sensitive data in
apps (short for Leak𝐴𝑝𝑝).

A New Attack Surface. We discover a new attack surface that
can be exploited by unauthorized apps to retrieve the sensitive data
based on the observation that Android framework also uses Intent
to conduct inter-process communication for various purposes, such
as notifying apps about occurrences of special system events [22].
Specifically, as presented in Figure 1, if the Intent object sent by
Android framework, carries sensitive data and can be received by
an unauthorized app, it can obtain the sensitive data in the Intent
object, violating the access control. In this scenario, since the Intent

https://doi.org/10.1145/3548606.3560601
https://doi.org/10.1145/3548606.3560601

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Hao Zhou, Xiapu Luo, Haoyu Wang, and Haipeng Cai

call framework API
to get sensitive data

A New Attack Surface
Intent sent by framework

carries sensitive data

Android
Framework

Authorized
App

Unauthorized
Appuse Intent to send sensitive data

The known attack surface The new attack surface

Figure 1: Attack surfaces that can be exploited by the unauthorized
app to retrieve the sensitive data in Android framework.

object is sent by Android framework, we call it the Intent based
leak of sensitive data in Android framework (short for Leak𝐹𝑟𝑚).

Although various work [30, 31, 34, 41, 44, 45, 49, 58, 60] has been
conducted to detect Leak𝐴𝑝𝑝 , their approaches cannot be used to
identify Leak𝐹𝑟𝑚 directly, because none of them has investigated
the sensitive data in Android framework so that they cannot rec-
ognize the Intent object that carries sensitive data and is sent by
Android framework.

In order to fill the gap, in this paper, we conduct the first sys-
tematic investigation on Leak𝐹𝑟𝑚 , and design and develop a new
tool named LeakDetector to automatically uncover such kind of
vulnerability. More precisely, LeakDetector first analyzes sensitive
framework APIs to find the entities (i.e., fields and classes defined
in Android framework) that store sensitive data, and we name such
entities as sensitive entities. Then, LeakDetector analyzes Intent
objects sent by Android framework. This process consists of three
steps. First, to analyze sensitive framework APIs and the Intent
objects in Android framework, LeakDetector builds the callgraph
of Android framework by performing static analysis on JAR files
and APK files of the framework. Second, based on the callgraph,
LeakDetector finds sensitive fields defined in Android framework,
which store the sensitive data, and sensitive classes whose instances
encapsulate the sensitive data by conducting data flow analysis on
return values of sensitive framework APIs. Third, based on the
identified sensitive entities, to uncover the Intent based leak of
sensitive data in Android framework, LeakDetector determines
whether the Intent objects sent by the framework can be received
by unauthorized apps and carry the sensitive data (i.e., values of
sensitive fields or instances of sensitive classes) by performing data
flow analysis on the Intent objects.

When implementing data flow analysis, we address the challenge
of tracking data in the collection objects [13] (e.g., List objects, Set
objects, and Map objects) by modelling the element-adding methods
(e.g., List.add, List.addAll). Specifically, we perform data flow
analysis on these methods’ arguments to track every data added to
the collection objects (detailed in §4.3).

We use LeakDetector to discover Leak𝐹𝑟𝑚 in 10 commercial
Android systems on 2 latest Android versions (i.e., Android 11 and
12) from 5 mobile vendors, including Google, Samsung, Xiaomi,
Oneplus, and Vivo. In total, we uncover 36 exploitable cases of
Leak𝐹𝑟𝑚 , which can be taken advantage by unauthorized apps
to retrieve the sensitive data, violating the access control in the
framework. We have reported these cases to the corresponding
mobile vendors. At the time of writing, 16 of them have already
been confirmed, and we received bug bounty rewards from Google,
Samsung, and Xiaomi.

In summary, we make the following contributions:
• To the best of our knowledge, we are the first to reveal and inves-
tigate Intent based leak of sensitive data in Android framework.

• We design and develop LeakDetector, a new tool to automat-
ically uncover the Intent based leak of sensitive data in An-
droid framework. The source code of LeakDetector is available
at https://github.com/moonZHH/LeakDetector.

• We extensively evaluate the performance of LeakDetector by
applying it to 10 commercial Android systems from 5 mainstream
mobile vendors. In total, we discover 36 exploitable cases of the
Intent based leak of sensitive data in Android framework, which
can be abused by unauthorized apps to violate the access control
to retrieve the sensitive data.

2 BACKGROUND
This section introduces the access control in Android framework for
restricting the retrieval of sensitive data in §2.1. To explain Leak𝐹𝑟𝑚
(see §3), we provide the necessary knowledge about Intent in §2.2.

2.1 Access Control
Android framework provides interfaces (i.e., sensitive framework
APIs) for apps to retrieve the sensitive data. To prevent unauthorized
apps from accessing the sensitive data, Android framework enforces
access control on these sensitive APIs, such as permission check,
UID check, and User ID check [24, 28, 29, 32, 57, 63]. Since the
framework mainly employs permission check to protect Intent
[43] (see §2.2), in this section, we introduce the permission based
access control in Android framework.
• Permission based Access Control. It requires apps to gain the
necessary permissions to retrieve the sensitive data (e.g., device ID)
from Android framework [20].

 01 public String getDeviceId(*) {
 02 if (mContext.checkPermission(READ_PRIVILEGED_PHONE_STATE,*, *)) {

 // class "com.android.phone.PhoneInterfaceManager"

 03 return PhoneFactory.getPhone(0).getDeviceId();
 04 } // if apps have been granted with the required permission, return device ID
 05 return null; // if apps do not have the required permission, return null

required permission

 06 } /* irrelevant code is omitted */

Figure 2: An example of permission based access control enforced
on the sensitive framework API for protecting the sensitive data.

More specifically, when an app invokes sensitive framework APIs
to retrieve the sensitive data, these APIs call permission-checking
methods [28, 29, 57] (e.g., Context.checkPermission listed in Table
1) to enforce permission check on the app. For example, as shown
in Figure 2, when an app invokes the sensitive framework API
getDeviceId to retrieve the device ID, the API calls the permission-
checking method checkPermission in Line 2 to examine whether
the calling app has been granted with the required permission
READ_PRIVILEGED_PHONE_STATE. If so, the API returns the sensitive
data (i.e., device ID) to the app in Line 3.

2.2 Intent
Intent is an inter-process communication mechanism in Android
[3]. An Intent object is a message sent by Android framework or

https://github.com/moonZHH/LeakDetector

Uncovering Intent based Leak of Sensitive Data in Android Framework CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Table 1: A partial list of permission-checking methods.

Class Method

Context
checkPermission(*), enforcePermission(*)
checkCallingPermission(*), enforceCallingOrSelfPermission(*)
checkCallingOrSelfPermission(*), enforceCallingPermission(*)

ActivityManagerService checkPermission(*), checkCallingPermission(*)
enforcePermission(*), enforceCallingOrSelfPermission(*)

PermissionManagerService checkPermission(*), checkUidPermission(*)

apps to request an action from its recipients, i.e., app components
(including activities, services, content providers and broadcast re-
ceivers) [12]. Android framework provides APIs to create and send
Intent objects. We list some necessary APIs in Table 2 for explain-
ing Leak𝐹𝑟𝑚 in §3, and detail their functionality as follows.

Table 2: A partial list of Intent related APIs.

Functionality API

Set Intent action. Constructors of Intent, i.e., Intent(ACTION_*)
Intent.setAction(ACTION_*)

Set Intent recipient. Constructors of Intent, i.e., Intent(ACTION_*, "class name")
Intent.setClass(*) / setClassName(*) / setComponent(*)

Set Intent data. Intent.putExtra(data) / putParcelableArrayListExtra(data)

Send Intent. Context.startActivity(intent) / sendBroadcast(intent)
PendingIntent.getActivity(intent) / getBroadcast(intent)

• Setting Intent Action. The action of an Intent object is a string
that provides an abstract description of the action to be performed
by its recipients [12]. Android framework provides APIs to set the
action of an Intent object, such as the API setAction defined in
the class Intent, which takes the action string as its argument.
• Setting Intent Recipient. The Intent object whose recipient
is specified is called an explicit Intent object [12], and it can only
be received by the specified recipient, i.e., the specified app com-
ponent. Android framework provides APIs to specify the recipient
of an Intent object, such as the APIs setClass, setClassName, and
setComponent defined in the class Intent. When calling these APIs,
the package name, class name, Class object [14], or ComponentName
object [6] of the specified app component is passed to these APIs.

The Intent object whose recipient is unspecified is called an
implicit Intent object [12], and it can be received by multiple recip-
ients, i.e., multiple app components. To receive an implicit Intent
object, app components need to declare that they can perform the
action of this Intent object by setting the intent-filter tag in the
manifest files that registered the components or programmatically
setting the components’ IntentFilter objects [12].
• Setting Intent Data. Since Intent is commonly used to share
data across processes [3], to set the data carried by an Intent object,
Android framework provides a serials of putExtra APIs, which take
the transferred data as their arguments.
• Sending Intent. The framework provides various APIs to send
an Intent object to its recipient, such as the APIs startActivity
and sendBroadcast defined in the class Context, getActivity and
getBroadcast defined in the class PendingIntent. When calling
some of these Intent sending APIs (e.g., sendBroadcast), the per-
mission requirement for the recipient to receive the Intent object

 01 public int getCurrentTtyMode(*) {
 02 enforceCallingOrSelfPermission(READ_PRIVILEGED_PHONE_STATE);

 // class "com.android.server.telecom.TelecomServiceImpl"

 03 return mCallsManager.getCurrentTtyMode();
04 } /* irrelevant code is omitted */

 06 return mTtyManager.getCurrentTtyMode();
 07 }

 // class "com.android.server.telecom.TtyManager"
 08 int getCurrentTtyMode() {
 09 return mCurrentTtyMode;
 10 }

 // class "com.android.server.telecom.CallsManager"
 05 int getCurrentTtyMode() {

call

call

permission check

TtyManager.mCurrentTtyMode
field stores the sensitive data

Figure 3: A sensitive field in Android framework.

 02 enforceCallingOrSelfPermission(MANAGE_DEBUGGING);

 // class "com.android.server.adb.AdbService"

 03 return mDebuggingManager.getPairedDevices();
 04 } /* irrelevant code is omitted */

 // class "com.android.server.adb.AdbDebuggingManager"
 05 public Map<String, PairDevice> getPairedDevices() {
 06 AdbKeyStore keystore = new AdbKeyStore();
 07 return keystore.getPairedDevices();
 08 }

 01 public Map<String, PairDevice> getPairedDevices() {

permission check

return a Map containing
instances of PairDevice

return

 // class "com.android.server.adb.AdbDebuggingManager.AdbKeyStore "
 09 public Map<String, PairDevice> getPairedDevices() {
 10 Map<String, PairDevice> pairedDevices = new HashMap<>();

 12 return pairedDevices;
 11 for (*) { pairedDevices.put(*, new PairDevice(*)); }

 13 } /* irrelevant code is omitted */
create instances of PairDevice

and put them into a Map

return

Figure 4: A sensitive class in Android framework.

can be set, and it is taken as the APIs’ arguments. Once set, only the
recipients, whose hosts (e.g., the apps that register the recipients)
have been granted with the required permissions, can receive the
Intent object at runtime.

3 INTENT BASED LEAK OF SENSITIVE DATA
This section investigates the sensitive data in Android framework
in §3.1. Then, we explain Leak𝐹𝑟𝑚 , introduce two types of Leak𝐹𝑟𝑚 ,
and provide the threat model in §3.2. After that, for each type of
Leak𝐹𝑟𝑚 , we demonstrate a motivating example in §3.3.

3.1 Sensitive Entity in Android Framework
Since sensitive framework APIs retrieve the sensitive data and re-
turn the data to their callers (as introduced in §2.1), we study the
implementations of these APIs to investigate the sensitive data in
Android framework. Specifically, we discover two types of entities
in Android framework that store the sensitive data, including the
sensitive field and the sensitive class defined in Android framework.
• Sensitive Field in Android Framework. A few sensitive frame-
work APIs (e.g., TelecomServiceImpl.getCurrentTtyMode) access
the fields of Java classes defined in Android framework to retrieve

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Hao Zhou, Xiapu Luo, Haoyu Wang, and Haipeng Cai

the sensitive data and return the data to their callers. We call these
fields, storing the sensitive data, sensitive fields.

For example, Figure 3 shows the simplified code snippet of the
API TelecomServiceImpl.getCurrentTtyMode. This API retrieves
the sensitive data (i.e., the sensitive phone state information about
the enabled teletypewriter mode on device [9]) from the sensitive
field TtyManager.mCurrentTtyMode in Android framework. More
specifically, to access the sensitive data, the API getCurrentTtyMode
invokes the method CallsManager.getCurrentTytMode in Line 3,
which invokes the method TtyManager.getCurrentTtyMode in Line
6 to access the sensitive field mCurrentTtyMode storing the sensitive
data in Line 9. In order to prevent the sensitive data from being
retrieved by unauthorized apps that have not been granted with
the permission READ_PRIVILEGED_PHONE_STATE, the sensitive API
enforces permission check in Line 2.
• Sensitive Class in Android Framework. Other sensitive frame-
work APIs (e.g., AdbService.getPairedDevices) encapsulate the
sensitive data using instances of Java classes defined in Android
framework and return these instances to their callers. We call these
classes, encapsulating the sensitive data, sensitive classes.

For example, Figure 4 shows the simplified code snippet of
the API AdbService.getPairedDevices. This API internally cre-
ates instances of the sensitive class PairDevice to encapsulate
the sensitive data (i.e., the sensitive information about the paired
devices for wireless ADB debugging [7]) retrieved from a system
file. More specifically, in Line 11, instances of the sensitive class
PairDevice are created and put into a collection object [13] (i.e., the
Map object initialized in Line 10), which is returned to the method
AdbDebuggingManager.getPairedDevices in Line 12 and the API
getPairedDevices in Line 7, respectively. Then, in Line 3, the API
returns the collection object, storing the instances of PairDevice,
to its caller. In order to prevent the sensitive data from being re-
trieved by unauthorized apps that have not gained the permission
MANAGE_DEBUGGING, the API enforces permission check in Line 2.

It is worth mentioning that, if the type of a sensitive field is a Java
class defined in Android framework, this class is also considered as
a sensitive class because the instance of the class, being stored in
the sensitive field, contains sensitive data.

3.2 Two Types of LeakFrm
In this section, we introduce two types of Leak𝐹𝑟𝑚 and present the
threat model of Leak𝐹𝑟𝑚 .
• Definition of LeakFrm. If an Intent object sent by the frame-
work, carrying the sensitive data, is received by the component
of an unauthorized app that has not requested and gained any
permissions, the sensitive data is leaked to the unauthorized app
via the Intent object. We call this scenario the Intent based leak
of sensitive data in Android framework (short for Leak𝐹𝑟𝑚). Note
that, the unauthorized app cannot get the sensitive data by calling
sensitive framework APIs due to lacking the required permissions.

Accordingly, there are three entities involved in Leak𝐹𝑟𝑚 as
shown in Figure 5. (1) An Intent sender, i.e., Android framework.
(2) An Intent object sent by the Intent sender, which carries the
sensitive data. (3) An Intent recipient, i.e., the component of an

unauthorized app that receives the Intent object and gets the sen-
sitive data carried by the Intent object, resulting in the leakage of
the sensitive data.

Android Framework Component of
Unauthorized App

 Intent Object

Recipient: Unspecified
Permission requirement: UnsetIntent Sender Intent Recipient

Action: Set1
2
3
4 Data: Sensitive data

Figure 5: Entities of LeakFrm.

To let the component of the unauthorized app receive the Intent
object, the Intent object needs to meet three requirements. 1 The
action of the Intent object is set; 2 The recipient of the Intent
object is unspecified, so that the unauthorized app can register a
component and declare that the component can perform the action
of the Intent object in order to receive the Intent object; 3 The
permission requirement for receiving the Intent object is unset
when calling Intent sending APIs, so that the Intent object can be
received by the component of the unauthorized app that does not
request and gain any permissions.

Since the sensitive data carried by Intent object can be either
values of sensitive fields or instances of sensitive classes in Android
framework (see §3.1), we divide Leak𝐹𝑟𝑚 into two types. For each
type of Leak𝐹𝑟𝑚 , we detail the requirement for the sensitive data
carried by involved Intent object (i.e., requirement 4) as follows.

Android Framework Component of
Unauthorized App

 Intent Object

Recipient: Unspecified

Data: Sensitive field
Permission requirement: UnsetIntent Sender Intent Recipient

Action: Set1
2
3
4

Figure 6: Entities of Type-1 LeakFrm.

• Type-1. Figure 6 illustrates the details about the entities involved
in Type-1 Leak𝐹𝑟𝑚 . In particular, the Intent object sent by Android
framework carries the sensitive data stored in sensitive fields in
Android framework (i.e., requirement 4). That is, the sensitive data
stored in sensitive fields is leaked to the unauthorized app.

Android Framework Component of
Unauthorized App

Intent Sender Intent Recipient

 Intent Object

Recipient: Unspecified

Data: Sensitive class instance
Permission requirement: Unset

Action: Set1
2
3
4

Figure 7: Entities of Type-2 LeakFrm.

• Type-2. Figure 7 shows the details about the entities involved
in Type-2 Leak𝐹𝑟𝑚 . Specifically, the Intent object sent by Android
framework carries the instances of sensitive classes in the frame-
work (i.e., requirement 4). That is, the sensitive data encapsulated
in instances of sensitive classes is leaked to the unauthorized app.

Uncovering Intent based Leak of Sensitive Data in Android Framework CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

• Threat Model: According to the details about the entities of
Leak𝐹𝑟𝑚 , we assume that attackers can induce victims into in-
stalling and launching the unauthorized app, whose component
can receive the Intent object that is sent by Android framework
and carries the sensitive data. Since the unauthorized app does not
request any permissions, it is very hard for the existing permission
based malicious app detection tools [25, 26, 37, 48] to detect it and
warn the users.

3.3 Motivating Examples
For each type of Leak𝐹𝑟𝑚 , we present a real case we found in the
recently released Android 12 of the official Google Android system.
The two cases have been confirmed and patched by the Android
security team of Google.
• Type-1. The code fragment in Figure 8 presents a real case of
Type-1 Leak𝐹𝑟𝑚 .

 // class "com.android.server.telecom.TtyManager"
 01 private void updateCurrentTtyMode() {

 03 Intent intent = new Intent(action);

 05 intent.putExtra(*, ttyMode);
 06 sendBroadcastAsUser(intent, null);
 07 } /* irrelevant code is omitted */

 04 int ttyMode = TtyManager.mCurrentTtyMode // the value of the sensitive field
// recipient of the Intent object is unspecified

 02 String action = "*.CURRENT_TTY_MODE_CHANGED"; // action string
1 // action of the Intent object is set

2

// the value of the sensitive field is carried4
// permission requirement is unset3

Figure 8: A real case of Type-1 LeakFrm.

The Intent object created and sent in the framework method
updateCurrentTtyModemeets all requirements of the Intent object
involved in Type-1 Leak𝐹𝑟𝑚 . Specifically, 1 in Line 3, the frame-
work calls the constructor method of the class Intent to create and
set the action of the Intent object. 2 The framework does not call
any APIs to specify the recipient of the created Intent object. 3
In Line 6, when calling the API sendBroadcastAsUser to send the
Intent object, no permission requirement for receiving the Intent
object is set. 4 In Line 4, updateCurrentTtyMode directly accesses
the sensitive field TtyManager.mCurrentTtyMode (see §3.1) to re-
trieve the sensitive data instead of calling the sensitive framework
API getCurrentTtyMode (introduced in §3.1). Then, in Line 5, the
API putExtra is called to make the Intent object carry the sensitive
data. Accordingly, an unauthorized app can register a broadcast
receiver to receive the Intent object and then get the value of the
sensitive field mCurrentTtyMode carried by the Intent object.

Note that, the framework only allows the authorized app, having
gained the permission READ_PRIVILEGED_PHONE_STATE, to retrieve
the data stored in the sensitive field mCurrentTtyMode by calling the
sensitive framework API TelecomServiceImpl.getCurrentTtyMode
(see §3.1). However, exploiting this case of Type-1 Leak𝐹𝑟𝑚 , the
unauthorized app can violate the access control to get the sensitive
data stored in mCurrentTtyMode. As a result, the sensitive phone
state information about the enabled teletypewriter mode is leaked
to the unauthorized app.
• Type-2. The code fragment in Figure 9 presents a real case of
Type-2 Leak𝐹𝑟𝑚 .

 // class "com.android.server.adb.AdbDebuggingManager$AdbDebuggingHandler"
 01 private void onPairingResult(*) {

 03 Intent intent = new Intent(action);

 05 intent.putExtra(*, device);
 06 sendBroadcastAsUser(intent, null);
 07 } /* irrelevant code is omitted */

 04 PairDevice device = new PairDevice(*); // an instance of the sensitive class
// recipient of the Intent object is unspecified

 02 String action = "*.WIRELESS_DEBUG_PAIRING_RESULT"; // action string
1 // action of the Intent object is set

2

// the instance of the sensitive class is carried4
// permission requirement is unset3

Figure 9: A real case of Type-2 LeakFrm.

The Intent object created and sent in the framework method
onPairingResult meets all requirements of the Intent object in-
volved in Type-2 Leak𝐹𝑟𝑚 . Specifically, 1 in Line 3, the frame-
work calls the constructor method of the class Intent to create
and set the action of the Intent object. 2 The framework does
not call any APIs to specify the recipient of the created Intent ob-
ject. 3 In Line 6, when calling the API sendBroadcastAsUser to
send the Intent object, no permission requirement for receiving
the Intent object is set. 4 Instead of calling the sensitive frame-
work API getPairedDevices to get instances of the sensitive class
PairDevice (see §3.1), in Line 4, onPairingResult creates a new
instance of PairDevice to encapsulate the sensitive data. Then, in
Line 5, the API putExtra is called to make the Intent object carry
the sensitive data. Accordingly, an unauthorized app can register a
broadcast receiver to receive the Intent object and get the instance
of the sensitive class PairDevice carried by the Intent object.

It is worth noting that Android framework only allows the au-
thorized app, having gained the permission MANAGE_DEBUGGING, to
retrieve instances of the sensitive class PairDevice by calling the
sensitive framework API AdbService.getPairedDevices (see §3.1).
However, exploiting this case of Type-2 Leak𝐹𝑟𝑚 , the unauthorized
app can retrieve instances of PairDevice. As a result, the sensitive
information about the paired devices for wireless ADB debugging
is leaked to the unauthorized app.

Although various work has been conducted to investigate and
detect the Intent based data leak [30, 31, 34, 41, 44, 45, 49, 58, 60],
to the best of our knowledge, they all focus on studying Leak𝐴𝑝𝑝 ,
leaving Leak𝐹𝑟𝑚 not studied. The existing approaches cannot be
adapted to identify Leak𝐹𝑟𝑚 because the sensitive data carried by
the Intent object sent by Android apps and Android framework
is retrieved using different methods. Specifically, since apps call
sensitive framework APIs to retrieve the sensitive data, the existing
approaches analyze these API calls in apps to determine whether the
Intent object carries sensitive data. However, the framework does
not rely on sensitive framework APIs to retrieve the sensitive data,
and it can directly access sensitive fields to get the sensitive data or
create instances of sensitive classes to encapsulate the sensitive data
(see the motivating examples). Therefore, the existing approaches
cannot find out that the Intent objects sent by the framework carry
the sensitive data. Thus, they cannot uncover Leak𝐹𝑟𝑚 .

To fill the gap, we design and develop LeakDetector, a new tool
for uncovering Leak𝐹𝑟𝑚 . Specifically, for the motivating example
in Figure 8, LeakDetector first determines that mCurrentTtyMode
is a sensitive field in Android framework. Then, LeakDetector ana-
lyzes the action and the recipient of the Intent object created in

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Hao Zhou, Xiapu Luo, Haoyu Wang, and Haipeng Cai

updateCurrentTtyMode, the permission requirement for receiving
the Intent object, and finds that they meet the requirement for the
Intent object in Type-1 data leak. Moreover, LeakDetector ana-
lyzes the data carried by the Intent object and notices that the data
refers to the value stored in the sensitive field mCurrentTtyMode (i.e.,
this Intent object carries the sensitive data). Since all requirements
for the Intent object in Type-1 data leak are met, LeakDetector
uncovers a case of Type-1 Leak𝐹𝑟𝑚 .

4 LEAKDETECTOR
In §4.1, we present the overview and workflow of LeakDetector.
Then, we introduce design details of LeakDetector in §4.2-§4.4.

1. Extract Dex Files

2. Build Callgraph

Preprocessor

Sensitive API Analyzer
1. Find Sensitive APIs

Intent Object Analyzer
1. Inspect Action and Recipient

2. Inspect Permission Requirement

2. Identify Sensitive Fields

3. Identify Sensitive Classes

3. Analyze Carried Data

Callgraph Collections of sensitive fields and classes

Android System

Input

Output
Cases of LeakFrm

Figure 10: The overview and workflow of LeakDetector.

4.1 Overview and Workflow
Figure 10 illustrates the overview and workflow of LeakDetector,
which consists of three modules, including preprocessor, sensitive
API analyzer, and Intent object analyzer.
• Preprocessor (§4.2): For analyzing the sensitive framework APIs
and the Intent objects sent by Android framework, LeakDetector
extracts the Dex files, containing the implementations of Android
framework [40], from the JAR files and APK files of the framework,
and then builds the callgraph of Android framework.
• Sensitive API Analyzer (§4.3): For determining whether the data
carried by Intent objects sent by the framework is sensitive data
(i.e., values stored in sensitive fields or instances of sensitive classes),
LeakDetector analyzes sensitive framework APIs. More specifically,
LeakDetector first finds the sensitive APIs in Android framework,
which enforce access control and return the retrieved sensitive data
to their callers. Then, LeakDetector performs data flow analysis
on the return values of the identified sensitive framework APIs to
identify sensitive fields and sensitive classes in Android framework.
• Intent Object Analyzer (§4.4): In order to uncover Leak𝐹𝑟𝑚 ,
LeakDetector analyzes the Intent objects sent by the framework
to check whether they meet the requirements of the Intent ob-
ject involved in Leak𝐹𝑟𝑚 introduced in §3.2. Specifically, for each
Intent object sent by Android framework, LeakDetector conducts
data flow analysis on it to inspect the action and recipient of the
Intent object, and the permission requirement for receiving the
Intent object. Moreover, LeakDetector analyzes the data carried
by the Intent object to determine whether it is the value stored in
a sensitive field or the instance of a sensitive class.

4.2 Preprocessing
To build the callgraph of Android framework, which is further used
to analyze sensitive framework APIs (§4.3) and Intent objects sent
by Android framework (§4.4), LeakDetector extracts Dex files of
the framework and then analyzes the bytecode of Dex files.
• Extracting Dex Files. Depending on whether or not the com-
plete stock ROMs of Android systems are published by the mobile
vendors, LeakDetector employs two ways to extract the Dex files
of Android framework. If the complete stock ROMs are unavailable,
LeakDetector dumps the Dex files from smartphone at runtime.
Otherwise, LeakDetector extracts the Dex files from stock ROMs.

Towards dumping the Dex files at runtime, LeakDetector uses
ADB [2] to retrieve the JAR files from the system directory /sys-
tem/framework, where most of the sensitive framework APIs are
implemented [5]. In addition, since a few sensitive framework APIs
(e.g., the APIs related to Bluetooth, Telecom, and TeleService) are
implemented in the APK files placed in the system directories /sys-
tem/app and /system/priv-app [59], we also dump these APK files.

To extract the Dex files from stock ROMs, LeakDetector follows
the approaches introduced in the previous studies [40, 42]. Specif-
ically, LeakDetector uses the tools simg2img [4] and 7-Zip [1] to
unzip the ROMs and extract JAR files and APK files.

After getting the JAR files and APK files, LeakDetector decom-
presses them to extract the Dex files.
• Building Callgraph. Taking in the extracted Dex files of An-
droid framework, LeakDetector analyzes the bytecode of Dex files
to build the callgraph of the framework using Soot [21], a static
bytecode analysis framework. Note that, due to the complexity and
the large code base of Android framework, LeakDetector follows
the existing work [28, 29] to adopt the Class Hierarchy Analysis
based algorithm [39] to build the callgraph.

4.3 Analyzing Sensitive Framework APIs
As introduced in §3.1, sensitive framework APIs either return the
data stored in sensitive fields or instances of sensitive classes to their
callers. Accordingly, LeakDetector first finds the sensitive APIs in
Android framework, and then conducts data flow analysis on their
return values to identify the sensitive fields and sensitive classes in
the framework, which are further used to uncover Leak𝐹𝑟𝑚 (§4.4).
• Finding Sensitive Framework APIs. Since sensitive framework
APIs call permission-checking methods to enforce permission check
on their calling apps (see §2.1), LeakDetector locates the callers
of permission-checking methods from the callgraph of Android
framework and treats them as sensitive framework APIs. More-
over, for each sensitive framework API, LeakDetector determines
the permission 𝑝 under check, which is further associated to the
identified sensitive field or sensitive class for analyzing the Intent
objects sent by Android framework (see §4.4). Since the permission
under check is passed as an argument to the permission-checking
method and each permission is represented as a string constant in
Android framework [28, 29, 57], LeakDetector conducts interproce-
dural data flow analysis on arguments of the permission-checking
method called by the sensitive API under analysis.

For example, since both of themethod getCurrentTtyMode in Fig-
ure 3 and getPairedDevices in Figure 4 call permission-checking

Uncovering Intent based Leak of Sensitive Data in Android Framework CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

method enforceCallingOrSelfPermission in Line 2, they are iden-
tified as sensitive framework APIs. By analyzing the arguments of
enforceCallingOrSelfPermission, LeakDetector finds that these
APIs enforce check on permissions READ_PRIVILEGED_PHONE_STATE
and MANAGE_DEBUGGING, respectively.
• Identifying Sensitive Fields. Sensitive framework APIs can
retrieve the sensitive data stored in sensitive fields and then return
the data to their callers (see §3.1). Accordingly, to identify sensitive
fields, LeakDetector conducts interprocedural use-def analysis on
each sensitive API’s return value to check whether the return value
is defined as the field of a Java class defined in Android framework.
If so, the field is identified as a sensitive field in Android framework.

For each identified sensitive field 𝑆𝑓 , we associate it with the per-
mission 𝑝 being checked in the sensitive framework API, and store
them in a field-permission map𝑀𝑓 𝑝 B {𝑆𝑓 → 𝑝}. The constructed
field-permission map is further used by LeakDetector to query
whether the data carried by the Intent objects sent by Android
framework is sensitive data (see §4.4).

For example, since the return value of the sensitive framework
API TelecomServiceImpl.getCurrentTtyMode in Figure 3 is defined
as the field TtyManager.mCurrentTtyMode, this field is identified as
a sensitive field in Android framework. Then, we store the mapping
TtyManager.mCurrentTtyMode → READ_PRIVILEGED_PHONE_STATE
to the field-permission map𝑀𝑓 𝑝 .

 01 public NetworkInfo getNetworkInfo(*) {
 02 enforceCallingOrSelfPermission(ACCESS_NETWORK_STATE);

 // class "com.android.server.ConnectivityService"

 03 return new NetworkInfo(*) // new an instance of sensitive class NetworkInfo
 04 } /* irrelevant code is omitted */

permission check

Figure 11: An example of identifying sensitive class.

• Identifying Sensitive Classes. Sensitive framework APIs can
create instances of sensitive classes to encapsulate the sensitive data
and then return the instances to their callers (see §3.1). Accordingly,
to identify sensitive classes, LeakDetector conducts interprocedu-
ral use-def analysis on each sensitive API’s return value to check
whether the return value is defined by the new expression of a Java
class defined in Android framework. If so, the class is identified as
a sensitive class in Android framework.

For each identified sensitive class 𝑆𝑐 , we associate it with the
permission 𝑝 being checked in the sensitive framework API, and
store them in a class-permission map 𝑀𝑐𝑝 B {𝑆𝑐 → 𝑝}, which is
further used by LeakDetector to query whether the data carried
by the Intent objects sent by Android framework is sensitive data.

For example, since the return value of the sensitive framework
API getNetworkInfo in Figure 11 is defined by the new expression
of the class NetworkInfo, whose instances encapsulate the sensitive
information about network connectivity on device [8], this class
is identified as a sensitive class in Android framework. Then, the
mapping NetworkInfo → ACCESS_NETWORK_STATE is stored to the
class-permission map𝑀𝑐𝑝 .

⊲ Handling Collection Objects. As shown in Figure 4, sensi-
tive framework APIs can put the sensitive data stored in sensitive
fields or the instances of sensitive classes to collection objects [13]
(e.g., List objects, Set objects, and Map objects), and then return

the collection objects to their callers (see §3.1). To handle this case,
LeakDetector further analyzes each element added to the collection
objects to identify sensitive fields and sensitive classes. Precisely,
since each element stored in collection objects is passed as an argu-
ment to the element-adding methods (e.g., add, append, put listed
in Table 3), LeakDetector performs use-def analysis on the argu-
ments at calls to these methods. If the element is defined by the
value of a field or the instance of a class in Android framework,
the corresponding field or class is identified as a sensitive field or a
sensitive class. Additionally, if the element is defined by another
collection object, LeakDetector recursively analyzes the element
added to that collection object to identify sensitive fields and sensi-
tive classes in Android framework.

Table 3: A partial list of classes of collection objects.

Type Class Functionality Method

List ArrayList Add an element.
Add elements from a collection object.

add(*), push(*)
<init>(*), addAll(*)LinkedList

Set ArraySet Add an element.
Add elements from a collection object.

add(*)
<init>(*), addAll(*)HashSet

Map
ArrayMap Add a pair of elements.

Add elements from a collection object.
append(*, *), put(*, *)
<init>(*), putAll(*)HashMap

LinkedHashMap

For example, since the return value of the sensitive framework
API getPairedDevices in Figure 4 is defined by a collection object
(i.e., a HashMap object), whose elements are added by calling the
method put in Line 11, LeakDetector performs use-def analysis
on the arguments of put. LeakDetector finds that the element is
defined by the new expression of the class PairDevice, and thus
PairDevice is identified as a sensitive class. Then, the mapping
PairDevice → MANAGE_DEBUGGING is stored to𝑀𝑐𝑝 .

4.4 Analyzing Intent Objects
As introduced in §3.2, the Intent objects involved in both types of
Leak𝐹𝑟𝑚 need to meet four requirements. Accordingly, to uncover
Leak𝐹𝑟𝑚 , LeakDetector first finds the Intent objects created in the
framework by locating the new expression of the class Intent in
framework methods. Then, for each Intent object, LeakDetector
conducts data-flow analysis on it to determine whether it meets
the four requirements.
• Inspecting Action of Intent Objects (Requirement 1). To
inspect whether the action of an Intent object sent by Android
framework is set, LeakDetector conducts use-def analysis on the
Intent object to find all the statements related to this object, and
then it examines each statement to see whether an API for setting
Intent action is called. If so, the action of the Intent object is set.

For example, since the constructor method of Intent, taking in
the action string as its argument, is invoked in Figure 8 and Figure
9, LeakDetector determines that both of the action of the Intent
object created in the method updateCurrentTtyMode and that of
the Intent object created in the method onPairingResult are set
by Android framework.
• Inspecting Recipient of Intent Objects (Requirement 2). To
check whether the recipient of an Intent object sent by Android
framework is unspecified, LeakDetector performs use-def analysis

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Hao Zhou, Xiapu Luo, Haoyu Wang, and Haipeng Cai

on the Intent object to find all the statements associated with
this object, and then LeakDetector analyzes each statement to see
whether an API for specifying Intent recipient is invoked. If not,
the recipient of the Intent object is unspecified.

For example, since none of APIs for setting Intent recipient is
called in Figure 8 and Figure 9, LeakDetector identifies that both of
the recipient of the Intent object created in updateCurrentTtyMode
and that of the Intent object created in onPairingResult have not
been specified by Android framework.
• Inspecting Permission Requirement for Receiving Intent
Objects (Requirement 3). To examine whether the permission
requirement for receiving an Intent object sent by the framework
is unset, LeakDetector collects all the statements related to the
Intent object by applying use-def analysis on this object, and then
LeakDetector analyzes the statements that call Intent sending
APIs to see whether the permission requirement is passed as the
argument to these APIs. Specifically, LeakDetector conducts def-
use analysis on each argument of the called Intent sending APIs
to see whether the permission strings (e.g., those stored in the
field-permission map𝑀𝑓 𝑝 and the class-permission map𝑀𝑐𝑝) are
assigned to the argument. If not, LeakDetector determines that the
permission requirement for receiving the Intent object is unset.

For instance, since no permission strings are assigned to the
arguments of Intent sending API sendBroadcastAsUser in Figure
8 and Figure 9, LeakDetector considers both of the permission re-
quirement for receiving the Intent object created in the method
updateCurrentTtyMode and that for receiving the Intent object cre-
ated in onPairingResult have not been set by Android framework.
• Analyzing Data Carried by Intent Objects (Requirement
4). To check whether the data carried by an Intent object sent
by Android framework is the data stored in a sensitive field (i.e.,
requirement 4 for Type-1 Leak𝐹𝑟𝑚) or an instance of a sensitive
class (i.e., requirement 4 for Type-2 Leak𝐹𝑟𝑚), LeakDetector first
applies use-def analysis on the Intent object to collect all the state-
ments related to this object. Then, LeakDetector further analyzes
the statements that call the series of putExtra APIs to see whether
the data carried by the Intent object meets the requirement. Pre-
cisely, for each statement, LeakDetector performs use-def analysis
on the argument of the putExtra API to see whether the defini-
tion of the argument is either a field in the field-permission map
𝑀𝑓 𝑝 or an instance of the class in the class-permission map 𝑀𝑐𝑝 .
If so, LeakDetector considers that the Intent object sent by the
framework carries the sensitive data.

For example, since the definition of the data carried by the Intent
object sent in the method updateCurrentTtyMode in Figure 8 is the
sensitive field TtyManager.mCurrentTtyMode, LeakDetector deter-
mines that this Intent object carries the sensitive data stored in a
sensitive field. In addition, since the definition of the data carried
by the Intent object sent in the method onPairingResult in Figure
9 is an instance of the sensitive class PairDevice, LeakDetector
determines that this Intent object carries the sensitive data encap-
sulated in an instance of a sensitive class.

5 EVALUATION
We implement LeakDetector in around 6.7k SLOC in Java. We eval-
uate it by answering the following three research questions (RQs).

RQ1: Can LeakDetector precisely identify the sensitive fields and
sensitive classes in Android framework?
RQ2: Can LeakDetector effectively uncover Leak𝐹𝑟𝑚 in commercial
Android systems?
RQ3: How is the efficiency of LeakDetector?

Table 4: Details about Android systems under analysis.

Name Version Vendor ROM Date #Class #Method

1 AOSP Android 11 Google ✓ 10/2021 48,487 399,301
2 AOSP Android 12 Google ✓ 11/2021 64,868 485,794

3 ColorOS Android 11 Oneplus ✗ 12/2021 130,467 1,066,362
4 ColorOS Android 12 Oneplus ✗ 01/2022 148,325 1,147,707

5 MIUI Android 11 Xiaomi ✓ 12/2021 81,233 646,995
6 MIUI Android 12 Xiaomi ✓ 01/2022 90,996 718,184

7 OneUI Android 11 Samsung ✓ 12/2021 164,768 1,155,804
8 OneUI Android 12 Samsung ✓ 01/2022 167,790 1,197,433

9 OriginOS Android 11 Vivo ✗ 12/2021 102,551 798,347
10 OriginOS Android 12 Vivo ✗ 02/2022 123,392 932,481

Data Set. To answer the research questions, we use LeakDetector
to analyze 10 commercial Android systems. Table 4 lists the details
about the systems under evaluation, where Name, Version, Vendor,
and ROM provide the information about system name, Android ver-
sion, mobile vendor that deploys the corresponding system on its
mobile devices, and whether we found the complete stock ROM
of the system. In addition, #Classes and #Methods provide the
number of Java classes and methods defined and used in Android
framework of the system, respectively. In detail, we choose the lat-
est versions of Android systems (i.e., Android 11 and 12) deployed
on smartphones from popular mobile vendors [17] as our targets, in-
cluding the official Android system AOSP [10] deployed on Google
Pixel, and the commercial Android systems ColorOS [11] deployed
on Oneplus smartphones, MIUI [16] deployed on Xiaomi smart-
phones, OneUI [18] deployed on Samsung Galaxy smartphones,
and OriginOS [19] deployed on Vivo smartphones. We extracted
JAR files and APK files of Android framework of the systems under
evaluation from the downloaded stock ROMs of Google Pixel 4, Xi-
aomi 11, and Samsung Galaxy S21, and dumped the corresponding
files from ColorOS and OriginOS running on smartphones Oneplus
9 and Vivo iQOO 8 between October, 2021 and February, 2022.
Evaluation Setup The evaluation was conducted on a PC equipped
with Intel i7-6700k CPU, 64GB RAM, and 2TB SSD.

5.1 Identifying Sensitive Fields and Sensitive
Classes in Android Framework (RQ1)

Table 5 lists the results about the sensitive fields and sensitive
classes identified by LeakDetector in Android framework of AOSP,
where #Field and #Class provide the number of identified sensi-
tive fields and sensitive classes, respectively, and #Total provides
the total number of sensitive entities. Additionally, Table 6 presents
the results about the sensitive fields and sensitive classes identified
in Android framework of the commercial systems other than AOSP,
where #Add provides the increased number of sensitive entities
compared to AOSP. Specifically, comparing at the same Android
version, the numbers of sensitive fields and sensitive classes identi-
fied in Android framework of ColorOS, MIUI, OneUI, and OriginOS

Uncovering Intent based Leak of Sensitive Data in Android Framework CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

are all greater than those in AOSP. Meanwhile, Android framework
of OneUI Android 12 has the largest number of sensitive entities
among the systems under evaluation.

Table 5: Statistics about the sensitive fields and sensitive classes in
Android framework of AOSP.

Name Version #Field #FP𝐹𝑖𝑒𝑙𝑑 #Class #FP𝐶𝑙𝑎𝑠𝑠 #Total #FP𝑇𝑜𝑡𝑎𝑙

1 AOSP Android 11 159 8 87 4 246 12
2 AOSP Android 12 163 6 97 4 260 10

Table 6: Statistics about the sensitive fields and sensitive classes in
Android framework of other commercial systems.

Name Version #Field #Add𝐹𝑖𝑒𝑙𝑑 #Class #Add𝐶𝑙𝑎𝑠𝑠 #Total #Add𝑇𝑜𝑡𝑎𝑙

1 ColorOS Android 11 224 65 114 27 338 92
2 ColorOS Android 12 186 23 111 14 297 37

3 MIUI Android 11 195 36 96 9 291 45
4 MIUI Android 12 178 15 100 3 278 18

5 OneUI Android 11 232 73 115 28 347 101
6 OneUI Android 12 211 48 132 35 343 83

7 OriginOS Android 11 184 25 91 4 275 29
8 OriginOS Android 12 186 23 101 4 287 27

 01 private Setting getConfigSetting(*) {
 02 checkCallingOrSelfPermission(READ_DEVICE_CONFIG);

 // class "com.android.providers.settings.SettingsProvider

 05 } else { // the field SettingsState.mNullSetting does not contain sensitive data

 07 } } /* irrelevant code is omitted */

permission check

 03 if (/* condition is satisfied*/) { // the new instance contains sensitive data
 04 return new Setting(*); // the class Setting is identified as a sensitive class

 06 return SettingsState.mNullSetting; // wrongly identified as a sensitive field

P

O

Figure 12: A false positive of identified sensitive entities.

Moreover, to assess whether LeakDetector can precisely identify
sensitive fields and sensitive classes in Android framework, we
manually investigate the results on AOSP by referring to the source
code of sensitive framework APIs, where the sensitive entities are
identified. The assessment results are shown in Table 5, where #FP
provides the number of false positives in the identified sensitive
entities. We totally find 10 and 12 false positives in the sensitive
fields and sensitive classes identified in the framework of AOSP
Android 11 andAOSPAndroid 12, respectively. That is, the precision
of identified sensitive entities are 95.1% and 96.2%, respectively.

We inspect the false positives and observe that, although these
false positives are return values of sensitive framework APIs, they
are not the targets that the permission check intends to protect.
For example, as shown in Figure 12, the method getConfigSetting
enforces permission check in Line 2, and it has two return values,
including an instance of the class Setting in Line 4 and the data
accessed from the field SettingsState.mNullSetting in Line 6.
Therefore, LeakDetector considers that Setting is a sensitive class
and mNullSetting is a sensitive field. However, we find that, the
instance of Setting contains sensitive information about device
configurations, whereas the value of mNullSetting is an empty

object, which does not contain any sensitive information. That is,
the permission check is enforced to prevent the instance of Setting
rather than the data stored in mNullSetting from being retrieved
by unauthorized apps. Thus, mNullSetting should not be treated
as a sensitive field and it is a false positive.

Due to the complexity and huge code base of the Android system,
it is non-trivial for LeakDetector to identify all sensitive fields and
sensitive classes and for us to find all false negatives. We randomly
chose ten system services (e.g., AdbService, ConnectivityService,
TelecomServiceImpl) of AOSP andmanually constructed the ground
truth of sensitive fields and sensitive classes by code review. Then,
we used the ground truth to find false negatives and compute the
recall. Since themanually found sensitive fields and sensitive classes
are all identified by LeakDetector, no false negatives were found.

Answer to RQ1: LeakDetector can precisely identify sensitive
fields and sensitive classes in Android framework. Specifically,
LeakDetector identifies the sensitive entities in Android frame-
work of AOSP Android 11 and AOSP Android 12 with the preci-
sion 95.1% and 96.2%, respectively.

5.2 Uncovering LeakFrm in Commercial Android
Systems (RQ2)

Table 8 lists the results about Leak𝐹𝑟𝑚 uncovered by LeakDetector
in 10 commercial systems, where #Leak, #Type-1, and #Type-2
provide the number of discovered cases of Leak𝐹𝑟𝑚 in both types,
in Type-1, and in Type-2, respectively. Specifically, LeakDetector
finds at least 12 cases of Leak𝐹𝑟𝑚 in every system under evaluation.
Compared with AOSP, more cases of Leak𝐹𝑟𝑚 are uncovered in the
framework of ColorOS, MIUI, OneUI, and OriginOS. We discover
that the wrongly identified sensitive fields and sensitive classes
cause one false positive in cases of Leak𝐹𝑟𝑚 .

Moreover, to inspect whether the uncovered cases of Leak𝐹𝑟𝑚
are exploitable, we manually create proof-of-concept (PoC) unau-
thorized apps and trigger the framework to send the Intent objects
involved in these cases. For each case, if the sensitive data carried
by the Intent object can be received by our PoC app, we consider
the case is exploitable. In Table 8, #Exploitation provides the
numbers of exploitable cases. The details about each Intent object
involved in the exploitable cases are presented in Table 7 and Table
9, where Intent Action, Intent Sending API, and Sensitive
Entity provide the information about the action of the Intent
object, the API for sending the Intent object, and the entity of the
sensitive data carried by the Intent object. Specifically, we find
11 exploitable cases of Leak𝐹𝑟𝑚 in two Android versions of AOSP,
and 25 exploitable cases in the remaining 8 commercial Android
systems. For example, the two real cases introduced in §3.3 refer to
the 2𝑛𝑑 and 8𝑡ℎ cases in Table 7. We have reported these exploitable
cases to the corresponding mobile vendors. At the time of writ-
ing, 16 of them have been confirmed, and we received bug bounty
rewards from Google, Samsung, and Xiaomi.

By further analyzing the unexploitable cases, we find the main
reason: the dead code, which will never be executed by Android

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Hao Zhou, Xiapu Luo, Haoyu Wang, and Haipeng Cai

Table 7: Details about the exploitable Intent based leak of sensitive data in Android framework of AOSP.

Name Version Type Sensitive Entity Intent Action Intent Sending API

1 AOSP Android 11 Type-1 ClientModeImpl.mWifiState android.net.wifi.WIFI_STATE_CHANGED sendStickyBroadcastAsUser

2 AOSP Android 11/12 Type-1 TtyManager.mCurrentTtyMode android.telecom.action.CURRENT_TTY_MODE_CHANGED sendBroadcastAsUser

3 AOSP Android 11/12 Type-1 GsmCdmaPhone.mIsPhoneInEcmState android.intent.action.EMERGENCY_CALLBACK_MODE_CHANGED sendStickyBroadcastAsUser

4 AOSP Android 11/12 Type-1 ImsPhone.mIsPhoneInEcmState android.intent.action.EMERGENCY_CALLBACK_MODE_CHANGED sendStickyBroadcastAsUser

5 AOSP Android 11/12 Type-1 AdbConnectionInfo.mPort com.android.server.adb.WIRELESS_DEBUG_STATUS sendBroadcastAsUser

6 AOSP Android 11/12 Type-1 TetheredSoftApTracker.mTetheredSoftApState android.net.wifi.WIFI_AP_STATE_CHANGED sendStickyBroadcastAsUser

7 AOSP Android 12 Type-1 ConcreteClientModeManager.mWifiState android.net.wifi.WIFI_STATE_CHANGED sendStickyBroadcastAsUser

8 AOSP Android 11/12 Type-2 PairDevice com.android.server.adb.WIRELESS_DEBUG_PAIRING_RESULT sendBroadcastAsUser

9 AOSP Android 11/12 Type-2 PairDevice com.android.server.adb.WIRELESS_DEBUG_PAIRED_DEVICES sendBroadcastAsUser

10 AOSP Android 11/12 Type-2 PrintJobInfo android.print.PRINT_DIALOG getActivityAsUser

11 AOSP Android 11/12 Type-2 PhoneAccountHandle android.intent.action.CALL getActivity

Table 8: Overall detection results of LeakDetector.

Name Version #Leak #Type-1 #Type-2 #Exploitation

1 AOSP Android 11 12 7 5 10
2 AOSP Android 12 13 7 6 10

3 ColorOS Android 11 17 8 9 13
4 ColorOS Android 12 15 7 8 10

5 MIUI Android 11 21 10 11 14
6 MIUI Android 12 18 8 10 12

7 OneUI Android 11 21 10 11 16
8 OneUI Android 12 17 9 8 14

9 OriginOS Android 11 18 7 11 15
10 OriginOS Android 12 14 5 9 11

framework at runtime, wants to send the Intent objects. Specifi-
cally, we manually inspect the decompiled code of Android frame-
work and pre-installed apps to determine whether unexploitable
cases are dead code by following the approach presented in the
existing work [40]. If a case is neither called by pre-installed apps
nor framework APIs that can be called by apps, we treat it as an
unexploitable case.

Answer to RQ2: LeakDetector effectively uncovers Leak𝐹𝑟𝑚 in
commercial Android systems under evaluation. More specifically,
applying LeakDetector to 10 commercial Android systems, we
discover a total of 36 exploitable cases of Leak𝐹𝑟𝑚 .

5.3 Measuring Efficiency of LeakDetector (RQ3)
We run LeakDetector 10 times on each commercial Android system
under evaluation to measure LeakDetector’s efficiency, and the re-
sults are summarized in Table 10. Precisely, we measure the average
time (in seconds) taken by LeakDetector to uncover Leak𝐹𝑟𝑚 in
each system, and calculate the standard deviation. Additionally,
we compute the proportion of analysis time for each main task
of LeakDetector, including building callgraph, analyzing sensitive
framework APIs, and analyzing Intent objects in the framework.

More specifically, for every system under analysis, LeakDetector
takes less than 50 minutes to uncover Leak𝐹𝑟𝑚 . We notice that the
task of building callgraph takes the majority (> 98.0%) of the time
in the analysis. In particular, LeakDetector spends more than 47

minutes in building the callgraph of Android framework of OneUI
Android 12, and takes around 99.1% of the analysis time to construct
the callgraph of the framework of ColorOS Android 12. The reason
behind this is that, when building callgraph, LeakDetector needs
to load and analyze the bytecode of millions or even billions of Java
methods in Android framework (see Table 4). Towards the tasks
of analyzing framework APIs and inspecting Intent objects, since
LeakDetector just performs data flow analysis on return values
of sensitive framework APIs and Intent objects rather than every
variables in the framework, these two tasks only take a very small
portion (< 2.0%) of the time within the analysis.

Answer to RQ3: LeakDetector can efficiently uncover Leak𝐹𝑟𝑚 .
For every Android system under evaluation, LeakDetector takes
less than 50 minutes to uncover Leak𝐹𝑟𝑚 .

5.4 Case Study
Table 11 details the sensitive data that will be leaked to unauthorized
apps in the uncovered 36 exploitable cases of Leak𝐹𝑟𝑚 . Moreover, it
includes the permissions checked by the sensitive framework APIs
to restrict the retrieval of the sensitive data. In detail, the leaked
data mainly contains the sensitive information about phone state,
Wi-Fi state, network connections, and connected Bluetooth devices.

In the following, we present two case studies to show that at-
tackers can abuse the leaked sensitive data to control the device by
gaining the Shell privilege (case-1) and locate the user (case-2).
• Case-1. Referring to the 5𝑡ℎ case presented in Table 7, when the
wireless debugging state on device changes, Android framework
will send an Intent object, carrying the value of the sensitive field
AdbConnectionInfo.mPort. Meanwhile, according to the 5𝑡ℎ Row
in Table 11, since this sensitive field stores the sensitive information
about the port on which the wireless debugging is opened, such
sensitive information will be leaked to the unauthorized app.

⊲ Exploitation. To receive the Intent object, the attacker can
create a malicious app to register a broadcast receiver, which de-
clares that it can perform the action WIRELESS_DEBUG_STATUS. Con-
sequently, when the wireless debugging state on the device turns
on, the malicious app will receive the sensitive information about

Uncovering Intent based Leak of Sensitive Data in Android Framework CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Table 9: Details about the exploitable Intent based leak of sensitive data in Android framework of other commercial systems.

Name Version Type Sensitive Entity Intent Action Intent Sending API

1 ColorOS/MIUI Android 11 Type-1 WifiCountryCode.mDefaultCountryCode android.net.wifi.COUNTRY_CODE_CHANGED sendStickyBroadcastAsUser
/OriginOS

ColorOS/MIUI2
/OriginOS

Android 11 Type-1 WifiCountryCode.mTelephonyCountryCode android.net.wifi.COUNTRY_CODE_CHANGED sendStickyBroadcastAsUser

3 ColorOS/MIUI Android 11 Type-2 LinkProperties android.net.wifi.LINK_CONFIGURATION_CHANGED sendBroadcastAsUser
/OriginOS

4 ColorOS Android 11/12 Type-2 WifiInfo android.net.wifi2.STATE_CHANGE sendStickyBroadcastAsUser

5 ColorOS Android 11 Type-2 WifiInfo android.net.wifi.STATE_CHANGE sendStickyBroadcastAsUser

6 ColorOS Android 12 Type-2 WifiConfiguration android.net.wifi.DISABLE_ALERT_NETWORKS sendStickyBroadcastAsUser

7 MIUI Android 11/12 Type-2 BluetoothDevice com.android.bluetooth.headset.cancel.antilost getBroadcast

8 MIUI Android 11/12 Type-2 WifiConfiguration miui.intent.action.WIFI_CONNECTION_FAILURE sendBroadcastAsUser

9 MIUI Android 12 Type-2 BluetoothDevice com.android.bluetooth.headset.click.antilost_notification getBroadcast

10 MIUI Android 12 Type-2 BluetoothDevice com.android.bluetooth.headset.click.detail_notification getBroadcast

11 OneUI Android 11 Type-1 BluetoothDevice.mAddress com.samsung.android.input.REMOTE_INPUT_DEVICE_STATE_CHANGED sendStickyBroadcastAsUser

12 OneUI Android 11/12 Type-1 BluetoothDevice.mAddress com.samsung.android.input.REMOTE_INPUT_READY_TO_CONNECT sendBroadcast

13 OneUI Android 11/12 Type-1 HeadsetStateMachine.mDevice android.intent.action.VOICE_COMMAND startActivityAsUser

14 OneUI Android 11/12 Type-1 AidGroup.aids org.mona.CardEmulation.action.PPSE_UPDATED sendBroadcastAsUser

15 OneUI Android 11 Type-2 BluetoothDevice com.samsung.bluetooth.pan.panu_auth.auth_confirm sendBroadcast

16 OneUI Android 11/12 Type-2 BluetoothDevice com.samsung.btopp.intent.action.MSG_SESSION_COMPLETE sendBroadcast

17 OneUI Android 11/12 Type-2 BluetoothDevice com.samsung.btopp.intent.action.MSG_SESSION_ERROR sendBroadcast

18 OneUI Android 11 Type-2 BluetoothDevice com.samsung.bluetooth.pan.inactivenap.ASK_CONFIRM sendBroadcast

19 OneUI Android 11/12 Type-2 BluetoothDevice com.android.nfc.handover.action.DENY_CONNECT sendBroadcast

20 OneUI Android 11 Type-2 PhoneAccountHandle android.intent.action.CALL_PRIVILEGED startActivity

21 OriginOS Android 11 Type-2 LinkProperties android.net.extwifi.LINK_CONFIGURATION_CHANGED sendBroadcastAsUser

22 OriginOS Android 11/12 Type-2 BluetoothDevice android.bluetooth.multA2dp.action.STATE_CHANGED sendBroadcast

23 OriginOS Android 11/12 Type-2 WifiConfiguration android.net.extwifi.VIVO_CONNECTION_ALERT sendStickyBroadcastAsUser

24 OriginOS Android 11/12 Type-2 WifiConfiguration android.net.wifi.VIVO_CONNECTION_ALERT sendStickyBroadcastAsUser

25 MIUI Android 11 Type-2 LinkProperties android.net.wifi.SLAVE_LINK_CONFIGURATION_CHANGED sendBroadcastAsUser

Table 10: Time (in seconds) consumed for each main task of LeakDetector.

Name Version Total Build Callgraph Analyze Sensitive APIs Analyze Intent Objects
Mean Deviation Mean Deviation Proportion Mean Deviation Proportion Mean Deviation Proportion

1 AOSP Android 11 476.9 7.7 470.0 7.7 98.5% 3.1 0.2 0.7% 3.8 0.1 0.8%
2 AOSP Android 12 646.7 4.0 637.8 3.8 98.6% 4.3 0.3 0.7% 4.6 0.2 0.7%

3 ColorOS Android 11 1505.4 8.2 1482.6 8.1 98.5% 5.5 0.3 0.4% 17.3 0.4 1.1%
4 ColorOS Android 12 1745.7 10.8 1730.6 10.8 99.1% 5.1 0.3 0.3% 10.0 0.3 0.6%

5 MIUI Android 11 914.3 5.8 903.2 5.9 98.8% 4.5 0.2 0.5% 6.6 0.2 0.7%
6 MIUI Android 12 1034.2 7.7 1022.4 7.7 98.9% 4.7 0.2 0.4% 7.1 0.2 0.7%

7 OneUI Android 11 2180.3 12.4 2147.2 12.0 98.5% 7.0 0.3 0.3% 26.1 0.6 1.2%
8 OneUI Android 12 2881.4 33.2 2831.1 33.7 98.2% 21.9 0.8 0.8% 28.4 0.3 1.0%

9 OriginOS Android 11 1181.7 10.8 1158.3 10.5 98.0% 4.9 0.2 0.4% 18.5 0.6 1.6%
10 OriginOS Android 12 1547.6 20.0 1528.1 19.8 98.7% 5.8 0.3 0.4% 13.7 0.3 0.9%

the port on which the wireless debugging is opened. Note that, the
app does not need to gain the permission MANAGE_DEBUGGING, which
is enforced on the sensitive framework API to prevent unauthorized
apps from getting such sensitive information.

⊲ Security Impact. The malicious app can abuse the leaked port
information to set up wireless ADB debugging, run malicious code
in Shell privilege, and further control the device. More specifi-
cally, to locally set up ADB debugging in the malicious app, the

app can bundle an ADB server within it and leverage the wireless
ADB debugging feature on device [15]. In normal cases, setting up
wireless ADB debugging requires the user to turn on the wireless
debugging mode and then input the information about the port on
which the wireless debugging is opened [2]. However, since the
port information will be leaked to the malicious app, after inducing
the victim to enable the wireless debugging mode, the malicious
app can set up wireless debugging without the need of user input.
Then, the app can launch ADB shell to run malicious code in Shell

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Hao Zhou, Xiapu Luo, Haoyu Wang, and Haipeng Cai

Table 11: Details about the sensitive data leaked from Android framework.

Type Sensitive Entity Permission Sensitive Data

1 Field ClientModeImpl.mWifiState ACCESS_WIFI_STATE Wi-Fi enabled state of the device.

2 Field TtyManager.mCurrentTtyMode READ_PRIVILEGED_PHONE_STATE Teletypewriter mode of the device.

3 Field GsmCdmaPhone.mIsPhoneInEcmState READ_PRIVILEGED_PHONE_STATE Emergency callback mode of GSM.

4 Field ImsPhone.mIsPhoneInEcmState READ_PRIVILEGED_PHONE_STATE Emergency callback mode of IMS.

5 Field AdbConnectionInfo.mPort MANAGE_DEBUGGING Port on which the wireless ADB debugging is opened.

6 Field TetheredSoftApTracker.mTetheredSoftApState ACCESS_WIFI_STATE Tethered Wi-Fi hotspot enabled state.

7 Field ConcreteClientModeManager.mWifiState ACCESS_WIFI_STATE Wi-Fi enabled state of the device.

8 Field WifiCountryCode.mDefaultCountryCode NETWORK_SETTINGS Default country code set by the Wi-Fi framework.

9 Field WifiCountryCode.mTelephonyCountryCode NETWORK_SETTINGS Country code supplied by the telephony module.

10 Field BluetoothDevice.mAddress BLUETOOTH Hardware address of a remote bluetooth device.

11 Field HeadsetStateMachine.mDevice BLUETOOTH Information about the connected Bluetooth headset, such as MAC address.

12 Field AidGroup.aids NFC_PREFERRED_PAYMENT_INFO Registered application identifiers for the NFC card emulation service (e.g., payment service).

13 Class PairDevice MANAGE_DEBUGGING Information about a client in the ADB connection, such as client name, GUID.

14 Class PrintJobInfo ACCESS_ALL_PRINT_JOBS Properties of a print job, such as task id, print attributes.

15 Class PhoneAccountHandle MODIFY_PHONE_STATE The unique identifier for a method to make a phone call, such as ICCID for SIM card.

16 Class LinkProperties ACCESS_NETWORK_STATE Properties of a network link, such as gateway’s MAC address.

17 Class WifiInfo ACCESS_WIFI_STATE Information about an active Wi-Fi connection, such as RSSI.

18 Class WifiConfiguration ACCESS_WIFI_STATE Configurations about a Wi-Fi network, such as SSID, BSSID, password.

19 Class BluetoothDevice BLUETOOTH Information about a remote Bluetooth device, such as MAC address.

privilege [62]. Since ADB shell provides powerful functionality [2],
such as installing apps and modifying phone states, the malicious
app can abuse it to further control the device.
• Case-2. Referring to the 24𝑡ℎ case listed in Table 9, when an alert
of Wi-Fi connection occurs (e.g., failure of connecting to the Wi-Fi
network due to invalid password), Android framework of OriginOS
will send an Intent object, carrying an instance of the sensitive
class WifiConfiguration. Meanwhile, according to the 18𝑡ℎ Row
in Table 11, since this sensitive class encapsulates the sensitive
information about the configuration of the Wi-Fi network, such as
the name of Wi-Fi network (i.e., SSID), such sensitive information
will be leaked to the unauthorized app.

⊲ Exploitation. To receive the Intent object, the adversary can
create a malicious app to register a broadcast receiver, which de-
clares that it can perform the action VIVO_CONNECTION_ALERT. Con-
sequently, when an alert of Wi-Fi connection occurs, the malicious
app will receive the sensitive information about the configuration
of this Wi-Fi network. Note that, the app does not need to gain the
permission ACCESS_WIFI_STATE, which is enforced on the sensitive
framework API to prevent unauthorized apps from getting such
sensitive information.

⊲ Security Impact. We find that there are two ways for the
malicious app to locate the user by abusing the leaked Wi-Fi con-
figuration information. First, abusing the semantic information in
SSID, such as names of business entities, the attacker can infer the
user’s fine-granular location [35, 56]. Second, we discover that Orig-
inOS customizes WifiConfiguration to make it encapsulate more
sensitive information related to the Wi-Fi network. Specifically, a
new field vivoWifiConfiguration is added to WifiConfiguration,
which stores the instance of VivoWifiConfiguration, a new class
introduced by OriginOS. The new class has two fields vivoLatitude

and vivoLongitude, which store the latitude and longitude of the
user’s position when connecting the Wi-Fi network. Since the sen-
sitive geolocation information is leaked to the malicious app asso-
ciated with the instance of the sensitive class WifiConfiguration,
the attacker can abuse the geolocation information to locate user.

6 LIMITATIONS AND FUTUREWORK
LeakDetector has three main limitations.

First, LeakDetector mainly considers the permission based ac-
cess control in Android framework, because the framework employs
permission check to protect Intent [43]. In future work, we will
take other types of access control enforced on sensitive framework
APIs into consideration, and then extend LeakDetector to uncover
more cases of Leak𝐹𝑟𝑚 .

Second, we currently require manual efforts to evaluate whether
the cases of Leak𝐹𝑟𝑚 uncovered by LeakDetector are exploitable. In
future work, we intend to reducing the manual work. For example,
we can leverage dynamic testing [38] to trigger Android framework
to send Intent objects.

Third, LeakDetector just analyzes Dex files of Android frame-
work (i.e., Java code of Android framework), and thus LeakDetector
may miss the cases of Leak𝐹𝑟𝑚 in native code of Android frame-
work. We will adopt a hybrid approach to find such in future work.
For example, we could conduct binary analysis to identify the sen-
sitive data in native code and inspect the Intent objects sent by
native code of Android framework. We could also adopt dynamic
instrumentation techniques [61] to track the sensitive data in native
code to find whether it will be sent by the Intent objects, which
do not set the permission requirements for their recipients.

Uncovering Intent based Leak of Sensitive Data in Android Framework CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

7 RELATEDWORK
We present the related work on analyzing Intent in Android apps
in §7.1 and analyzing Android framework in §7.2.

7.1 Analyzing Intent in Android Apps
Numerous studies have been proposed to resolve the Intent objects
and analyze their security problems in Android apps. EPICC [53]
and IC3 [52] use interprocedural data-flow and points-to analysis to
resolve Intent objects for uncovering inter-component communi-
cation connection points in apps. PRIMO [54] applies probabilistic
models to resolve Intent and Intent filter matching to reduce false
positives in the analysis results of EPICC and IC3.

ComDroid [36], CHEX [50], COVERT [30], and SEALANT [47]
study the security challenges of Intent (e.g., Intent hijacking and
Intent spoofing) and statically detect these vulnerabilities in apps.
Apposcopy [44], Amandroid [60], IccTA [49], DroidSafe [45], DI-
ALDroid [34], Karim et al. [41], and Flair [31] rely on predefined
sensitive framework API lists generated by the existing work (e.g.,
Susi [27] and PScout [28]) to identify the sensitive data retrieved
by apps. Then, these studies statically inspect the Intent objects
sent by apps to identify Leak𝐴𝑝𝑝 .

However, the existing approaches cannot be applied to uncover
Leak𝐹𝑟𝑚 , because Android framework does not rely on sensitive
framework APIs to retrieve the sensitive data, resulting in that these
approaches cannot determine whether the Intent objects sent by
Android framework carry the sensitive data.

7.2 Analyzing Android Framework
Most of the existing work, targeting at analyzing Android frame-
work, focuses on building the permission specification for frame-
work APIs. Precisely, they identify the access control enforced on
framework APIs. PScout [28] and ARCADE [24] construct a context-
insensitive and a path-sensitive callgraph of Android framework,
respectively, to correlate framework APIs to their required permis-
sions. Alexandre et al. [33] assessed the performance of two call-
graph building algorithms (i.e., CHA and Spark) on constructing the
mapping between framework APIs and permissions. AXPLORER
[29] and HEAPHELPER [51] build more precise callgraphs of An-
droid framework to make the generated permission specification
more accurate. PSGen [63] analyzes native code of Android frame-
work to build the permission specification for native framework
APIs. Besides the tools built upon static analysis, DYNAMO [38]
dynamically tests Android framework APIs and records the permis-
sions being checked to generate the permission specification.

An application of permission specification analysis is to identify
the inconsistent permission check enforced in Android framework.
Kratos [57], AceDroid [23], ACMiner [46], and IAceDroid [62] stat-
ically build the permission specification for framework APIs, and
then they examine whether the two framework APIs, implementing
the same functionality, are protected by the same access control to
detect inconsistent access control enforcement.

However, since neither of these tools analyze sensitive frame-
work APIs to find the sensitive entities in Android framework nor
inspect the Intent objects sent by Android framework, they cannot
be used to uncover Leak𝐹𝑟𝑚 .

8 CONCLUSION
We are the first to reveal and systematically investigate the Intent
based leak of sensitive data in Android framework. To automati-
cally uncover such kind of vulnerability, we design and develop
LeakDetector, a novel tool that performs static analysis on An-
droid framework, especially the sensitive framework APIs and the
Intent objects sent by the framework. Applying LeakDetector to
10 commercial Android systems, we find that LeakDetector can
effectively and efficiently discover the Intent based data leak in
Android framework. In particular, we uncover 36 exploitable cases,
which can be abused by unauthorized apps to retrieve the sensitive
data, violating the access control in Android framework.

ACKNOWLEDGMENT
We thank the anonymous reviewers for their helpful comments.
This study was supported in part by Hong Kong RGC Projects
(No. PolyU15219319, PolyU15222320, PolyU15224121), the National
Natural Science Foundation of China (grant No.62072046), and the
Fundamental Research Funds for the Central Universities (HUST
3004129109).

REFERENCES
[1] 2022. 7-Zip. https://www.7-zip.org/.
[2] 2022. Android Debug Bridge (ADB). https://developer.android.com/studio/com

mand-line/adb.
[3] 2022. Android IPC Security Considerations. https://chromium.googlesource.co

m/chromium/src.git/+/refs/heads/main/docs/security/android-ipc.md.
[4] 2022. android-simg2img. https://github.com/anestisb/android-simg2img.
[5] 2022. Android System Partition. https://source.android.com/devices/bootloader/

partitions.
[6] 2022. android.content.ComponentName. https://developer.android.com/referenc

e/android/content/ComponentName.
[7] 2022. android.debug.PairDevice. https://cs.android.com/android/platform/supe

rproject/+/master:out/soong/.intermediates/frameworks/base/core/java/andro
id.debug_aidl-java-source/gen/android/debug/PairDevice.java.

[8] 2022. android.net.NetworkInfo. https://developer.android.com/reference/androi
d/net/NetworkInfo.

[9] 2022. android.telephony.TelephonyManager. https://developer.android.com/refe
rence/android/telephony/TelephonyManager.

[10] 2022. AOSP. https://developers.google.com/android/images.
[11] 2022. ColorOS. https://www.coloros.com.
[12] 2022. Intents and Intent Filters. https://developer.android.com/guide/componen

ts/intents-filters.
[13] 2022. Java Collections Framework Overview. https://docs.oracle.com/javase/8/d

ocs/technotes/guides/collections/overview.html.
[14] 2022. java.lang.Class. https://developer.android.com/reference/java/lang/Class.
[15] 2022. LADB, A local ADB shell for Android. https://github.com/tytydraco/LADB.
[16] 2022. MIUI. https://home.miui.com/.
[17] 2022. Mobile Vendor Market Share Worldwide. https://gs.statcounter.com/vendo

r-market-share/mobile.
[18] 2022. OneUI. https://developer.samsung.com/one-ui.
[19] 2022. OriginOS. https://www.vivo.com/originos.
[20] 2022. Permissions overview. https://developer.android.com/guide/topics/permi

ssions/overview.
[21] 2022. Soot. https://github.com/soot-oss/soot.
[22] 2022. System Broadcast Intents. https://developer.android.com/about/versions/1

2/reference/broadcast-intents-31.
[23] Yousra Aafer, Jianjun Huang, Yi Sun, Xiangyu Zhang, Ninghui Li, and Chen

Tian. 2018. AceDroid: Normalizing Diverse Android Access Control Checks for
Inconsistency Detection. In Proc. NDSS.

[24] Yousra Aafer, Guanhong Tao, Jianjun Huang, Xiangyu Zhang, and Ninghui Li.
2018. Precise Android API Protection Mapping Derivation and Reasoning. In
Proc. CCS.

[25] Anshul Arora, Sateesh K Peddoju, and Mauro Conti. 2019. Permpair: Android
malware detection using permission pairs. IEEE Transactions on Information
Forensics and Security 15 (2019), 1968–1982.

[26] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck,
and CERT Siemens. 2014. Drebin: Effective and explainable detection of android
malware in your pocket. In Proc. NDSS.

https://www.7-zip.org/
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://chromium.googlesource.com/chromium/src.git/+/refs/heads/main/docs/security/android-ipc.md
https://chromium.googlesource.com/chromium/src.git/+/refs/heads/main/docs/security/android-ipc.md
https://github.com/anestisb/android-simg2img
https://source.android.com/devices/bootloader/partitions
https://source.android.com/devices/bootloader/partitions
https://developer.android.com/reference/android/content/ComponentName
https://developer.android.com/reference/android/content/ComponentName
https://cs.android.com/android/platform/superproject/+/master:out/soong/.intermediates/frameworks/base/core/java/android.debug_aidl-java-source/gen/android/debug/PairDevice.java
https://cs.android.com/android/platform/superproject/+/master:out/soong/.intermediates/frameworks/base/core/java/android.debug_aidl-java-source/gen/android/debug/PairDevice.java
https://cs.android.com/android/platform/superproject/+/master:out/soong/.intermediates/frameworks/base/core/java/android.debug_aidl-java-source/gen/android/debug/PairDevice.java
https://developer.android.com/reference/android/net/NetworkInfo
https://developer.android.com/reference/android/net/NetworkInfo
https://developer.android.com/reference/android/telephony/TelephonyManager
https://developer.android.com/reference/android/telephony/TelephonyManager
https://developers.google.com/android/images
https://www.coloros.com
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters
https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html
https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html
https://developer.android.com/reference/java/lang/Class
https://github.com/tytydraco/LADB
https://home.miui.com/
https://gs.statcounter.com/vendor-market-share/mobile
https://gs.statcounter.com/vendor-market-share/mobile
https://developer.samsung.com/one-ui
https://www.vivo.com/originos
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://github.com/soot-oss/soot
https://developer.android.com/about/versions/12/reference/broadcast-intents-31
https://developer.android.com/about/versions/12/reference/broadcast-intents-31

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Hao Zhou, Xiapu Luo, Haoyu Wang, and Haipeng Cai

[27] Steven Arzt, Siegfried Rasthofer, and Eric Bodden. 2013. Susi: A tool for the
fully automated classification and categorization of android sources and sinks.
Technical Report TUDCS-2013-0114 (2013).

[28] K. Au, Yifan Zhou, Zhen Huang, and David Lie. 2012. PScout: Analyzing the
Android Permission Specification. In Proc. CCS.

[29] Michael Backes, Sven Bugiel, Erik Derr, Patrick McDaniel, Damien Octeau, and
Sebastian Weisgerber. 2016. On Demystifying the Android Application Frame-
work: Re-Visiting Android Permission Specification Analysis. In Proc. USENIX
Security.

[30] Hamid Bagheri, Alireza Sadeghi, Joshua Garcia, and Sam Malek. 2015. Covert:
Compositional analysis of android inter-app permission leakage. IEEE transactions
on Software Engineering (TSE) 41, 9 (2015), 866–886.

[31] Hamid Bagheri, Jianghao Wang, Jarod Aerts, Negar Ghorbani, and Sam Malek.
2021. Flair: efficient analysis of Android inter-component vulnerabilities in
response to incremental changes. Empirical Software Engineering (2021).

[32] David Barrera, H. Güneş Kayacik, Paul C. van Oorschot, and Anil Somayaji. 2010.
A Methodology for Empirical Analysis of Permission-Based Security Models and
Its Application to Android. In Proc. CCS.

[33] Alexandre Bartel, Jacques Klein, Martin Monperrus, and Yves Le Traon. 2014.
Static analysis for extracting permission checks of a large scale framework: The
challenges and solutions for analyzing android. IEEE Transactions on Software
Engineering 40, 6 (2014), 617–632.

[34] Amiangshu Bosu, Fang Liu, Danfeng Yao, and Gang Wang. 2017. Collusive data
leak and more: Large-scale threat analysis of inter-app communications. In Proc.
AsiaCCS.

[35] Maxim Chernyshev, Craig Valli, and Peter Hannay. 2015. On 802.11 access
point locatability and named entity recognition in service set identifiers. IEEE
Transactions on Information Forensics and Security (2015).

[36] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. 2011.
Analyzing inter-application communication in Android. In Proc. MobiSys. 239–
252.

[37] Abdallah Dawoud and Sven Bugiel. 2019. DroidCap: OS support for capability-
based permissions in android. In Proc. NDSS.

[38] Abdallah Dawoud and Sven Bugiel. 2021. Bringing balance to the force: Dynamic
analysis of the android application framework. In Proc. NDSS.

[39] Jeffrey Dean, David Grove, and Craig Chambers. 1995. Optimization of object-
oriented programs using static class hierarchy analysis. In Proc. ECOOP.

[40] Zeinab El-Rewini and Yousra Aafer. 2021. Dissecting Residual APIs in Custom
Android ROMs. In Proc. CCS.

[41] Karim O Elish, Haipeng Cai, Daniel Barton, Danfeng Yao, and Barbara G Ryder.
2018. Identifying mobile inter-app communication risks. IEEE Transactions on
Mobile Computing (2018).

[42] Mohamed Elsabagh, Ryan Johnson, Angelos Stavrou, Chaoshun Zuo, Qingchuan
Zhao, and Zhiqiang Lin. 2020. FIRMSCOPE: Automatic uncovering of privilege-
escalation vulnerabilities in pre-installed apps in android firmware. In Proc.
USENIX Security.

[43] William Enck, Machigar Ongtang, and Patrick McDaniel. 2009. Understanding
android security. IEEE security & privacy 7, 1 (2009), 50–57.

[44] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. 2014. Apposcopy: Semantics-
based detection of android malware through static analysis. In Proc. FSE.

[45] Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham, Nguyen Nguyen,
and Martin C Rinard. 2015. Information flow analysis of android applications in
droidsafe. In Proc. NDSS.

[46] Sigmund Albert Gorski, Benjamin Andow, Adwait Nadkarni, Sunil Manandhar,
William Enck, Eric Bodden, and Alexandre Bartel. 2019. ACMiner: Extraction and

Analysis of Authorization Checks in Android’s Middleware. In Proc. CODASPY.
[47] Youn Kyu Lee, Jae Young Bang, Gholamreza Safi, Arman Shahbazian, Yixue Zhao,

and Nenad Medvidovic. 2017. A sealant for inter-app security holes in android.
In Proc. ICSE.

[48] Jin Li, Lichao Sun, Qiben Yan, Zhiqiang Li, Witawas Srisa-An, and Heng Ye.
2018. Significant permission identification for machine-learning-based android
malware detection. IEEE Transactions on Industrial Informatics 14, 7 (2018), 3216–
3225.

[49] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-
Daniel. 2015. Iccta: Detecting inter-component privacy leaks in android apps. In
Proc. ICSE.

[50] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. 2012. Chex:
statically vetting android apps for component hijacking vulnerabilities. In Proc.
CCS.

[51] Lannan Luo. 2020. Heap Memory Snapshot Assisted Program Analysis for
Android Permission Specification. In Proc. SANER.

[52] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick
McDaniel. 2015. Composite constant propagation: Application to android inter-
component communication analysis. In Proc. ICSE.

[53] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden,
Jacques Klein, and Yves Le Traon. 2013. Effective inter-component communica-
tion mapping in android: An essential step towards holistic security analysis. In
Proc. USENIX Security.

[54] Octeau, Damien and Jha, Somesh and Dering, Matthew and McDaniel, Patrick
and Bartel, Alexandre and Li, Li and Klein, Jacques and Le Traon, Yves. 2016. Com-
bining static analysis with probabilistic models to enable market-scale android
inter-component analysis. In Proc. POPL.

[55] Joel Reardon, Álvaro Feal, PrimalWijesekera, Amit Elazari Bar On, Narseo Vallina-
Rodriguez, and Serge Egelman. 2019. 50 ways to leak your data: An exploration of
apps’ circumvention of the android permissions system. In Proc. USENIX Security.

[56] Suranga Seneviratne, Fangzhou Jiang, Mathieu Cunche, and Aruna Seneviratne.
2015. SSIDs in the wild: Extracting semantic information from WiFi SSIDs. In
Proc. LCN.

[57] Yuru Shao, Jason Ott, Qi Alfred Chen, Zhiyun Qian, and Z. Morley Mao. 2016.
Kratos: Discovering Inconsistent Security Policy Enforcement in the Android
Framework. In Proc. NDSS.

[58] Feng Shen, Namita Vishnubhotla, Chirag Todarka, Mohit Arora, Babu Dhanda-
pani, Eric John Lehner, Steven Y Ko, and Lukasz Ziarek. 2014. Information flows
as a permission mechanism. In Proc. ASE.

[59] Wenna Song, Jiang Ming, Lin Jiang, Yi Xiang, Xuanchen Pan, Jianming Fu, and
Guojun Peng. 2021. Towards Transparent and Stealthy Android OS Sandboxing
via Customizable Container-Based Virtualization. In Proc. CCS.

[60] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. 2014. Amandroid: A Pre-
cise and General Inter-Component Data Flow Analysis Framework for Security
Vetting of Android Apps. In Proc. CCS.

[61] Lei Xue, Yajin Zhou, Ting Chen, Xiapu Luo, and Guofei Gu. 2017. Malton: Towards
On-Device Non-Invasive Mobile Malware Analysis for ART. In Proc. USENIX
Security.

[62] Hao Zhou, Haoyu Wang, Xiapu Luo, Ting Chen, Yajin Zhou, and Ting Wang.
2022. Uncovering Cross-Context Inconsistent Access Control Enforcement in
Android. In Proc. NDSS.

[63] Hao Zhou, Haoyu Wang, Shuohan Wu, Xiapu Luo, Yajin Zhou, Ting Chen, and
Ting Wang. 2021. Finding the Missing Piece: Permission Specification Analysis
for Android NDK. In Proc. ASE.

	Abstract
	1 Introduction
	2 Background
	2.1 Access Control
	2.2 Intent

	3 Intent based Leak of Sensitive Data
	3.1 Sensitive Entity in Android Framework
	3.2 Two Types of TEXT
	3.3 Motivating Examples

	4 LeakDetector
	4.1 Overview and Workflow
	4.2 Preprocessing
	4.3 Analyzing Sensitive Framework APIs
	4.4 Analyzing Intent Objects

	5 Evaluation
	5.1 Identifying Sensitive Fields and Sensitive Classes in Android Framework (RQ1)
	5.2 Uncovering TEXT in Commercial Android Systems (RQ2)
	5.3 Measuring Efficiency of LeakDetector (RQ3)
	5.4 Case Study

	6 Limitations and Future Work
	7 Related Work
	7.1 Analyzing Intent in Android Apps
	7.2 Analyzing Android Framework

	8 Conclusion
	References

