
Happer: Unpacking Android Apps via a
Hardware-Assisted Approach

Lei Xue1∗, Hao Zhou1∗, Xiapu Luo1§, Yajin Zhou2, Yang Shi3, Guofei Gu4, Fengwei Zhang5, Man Ho Au6

1The Hong Kong Polytechnic University, 2Zhejiang University
3Tongji University, 4Texas A&M University

5Southern University of Science and Technology, 6The University of Hong Kong

Abstract—Malware authors are abusing packers (or runtime-
based obfuscators) to protect malicious apps from being analyzed.
Although many unpacking tools have been proposed, they can
be easily impeded by the anti-analysis methods adopted by the
packers, and they fail to effectively collect the hidden Dex data
due to the evolving protection strategies of packers. Consequently,
many packing behaviors are unknown to analysts and packed
malware can circumvent the inspection. To fill the gap, in this
paper, we propose a novel hardware-assisted approach that first
monitors the packing behaviors and then selects the proper
approach to unpack the packed apps. Moreover, we develop a
prototype named Happer with a domain-specific language named
behavior description language (BDL) for the ease of extending
Happer after tackling several technical challenges. We conduct
extensive experiments with 12 commercial Android packers and
more than 24k Android apps to evaluate Happer. The results show
that Happer observed 27 packing behaviors, 17 of which have
not been elaborated by previous studies. Based on the observed
packing behaviors, Happer adopted proper approaches to collect
all the hidden Dex data and assembled them to valid Dex files.

I. INTRODUCTION

Malware authors have been abusing packers (or runtime-
based obfuscators [70]) to protect malicious apps from being
analyzed [6]. We call the apps protected by packers as packed
apps and their protection behaviors as packing behaviors, such
as detecting the running environment, hiding the original Dex
data (i.e., the Dex file and the Dex items that constitute the
Dex file) and then releasing them at runtime, to name a few.
Many unpacking tools (i.e., unpackers) for Android apps [3, 7,
8, 36, 45, 56, 70, 72, 79, 86] have been developed to recover
the packed app’s original Dex file. They retrieve the hidden
Dex data that has been released to the memory through a
customized Android system [56, 70, 79, 86], or a debugger [3],
or a dynamic binary instrumentation (DBI) framework [36, 72],
or a full Android system emulator [7, 8, 45].

Since arms race between packers and unpackers never
ends, packers are evolving to render unpackers ineffective. In
particular, they adopt various approaches to detect the presence
of unpackers and impede the analysis as well as change the
write-then-execute pattern to prevent unpackers from collecting
all the hidden Dex data [1, 2]. To deal with the ever-evolving
packers, we argue that a long-lasting effective unpacker should
first scrutinize the packing behaviors of the packed apps and
then choose the proper unpacking strategies accordingly, instead

∗ Co-first authors.
§ The corresponding author.

TABLE I: An overview of existing unpackers in academia.

Unpacker Effectiveness Hidden Dex file1 Hidden Dex item1 #Behaviors2

DexHunter-15 [86] 7 3
AppSpear-15 [79] 7 4

PackerGrind-17 [72] 7 7
AppSpear-18 [53] 7 6

DroidUnpack-18 [45] 7 3
DexLego-18 [56] 7 N/A

TIRO-18 [70] 7 4
Happer 3 27

1 , , and indicate that all of, partial of, and none of the hidden Dex file (or the other hidden Dex
data), respectively, which will be dynamically released by the packers, can be collected by the unpacker.
2 #Behavior denotes the number of supported packing behaviors (more details in Table IV).

of using the fixed unpacking patterns. In particular, it should
fulfill the following three requirements.

• R1-Effectiveness: it should retrieve all the hidden Dex data
and assemble them into a valid Dex file. Effectiveness is
the basic requirement for unpackers;
• R2-Extensibility: it should be easily extended to cover new

packing behaviors;
• R3-Adaptivity: it should select proper unpacking strategies

according to the observed packing behaviors of packed apps.

Unfortunately, none of existing unpackers satisfies these
requirements. First, they do not fulfil R1, because they [7,
36, 72] rely on debuggers, emulators, or DBI frameworks and
thus can be easily detected by packers due to their noticeable
fingerprints, such as special strings left in the memory. Once
detected, packers may stop releasing the hidden Dex data.
Meanwhile, packers usually hook system library methods (e.g.,
write and __android_log_buf_write) to impede unpackers [8, 53,
56, 70, 79, 86] that use such methods to dump the released Dex
data. Moreover, as shown in Table I, existing unpackers fail to
obtain all the hidden Dex data. Specifically, some unpackers [7,
8, 36, 86] will obtain useless Dex files that contain invalid Dex
items. Others [53, 56, 70, 72, 79] can just retrieve partial Dex
items because packers may release the real code right before
execution and then delete it. Second, existing unpackers are
usually hard to be extended because they rarely consider the
evolution of packers, and thus do not meet R2. Third, almost
all existing unpackers use fixed unpacking strategies and thus
can be easily evaded and do not fulfill R3.

In light of these limitations, we propose a novel hardware-
assisted approach and develop a new tool named Happer, which
fulfills the three requirements, to revisit the latest Android
packers and reveal the packing behaviors missed by existing
unpackers. R1: Happer tracks the packed app’s runtime behav-

1

iors and dumps the hidden Dex data by leveraging the hardware
features of the ARM platform, including ETM (Embedded
Trace Macrocell) and HBRKs (Hardware Breakpoints), so that
it cannot be easily impeded by packers. Meanwhile, we let
the packed app release all the hidden Dex data at runtime,
and thus Happer can collect them to effectively recover the
original Dex file. R2: We design a domain-specific language
BDL for analysts so that they can easily specify the (new)
packing behaviors to be tracked by Happer. Currently, Happer
supports 27 packing behaviors, much more than the number of
packing behaviors reported by previous studies. R3: Instead of
adopting a fixed strategy to unpack apps, Happer selects the
proper Dex data collection points according to the observed
packing behaviors.

More specifically, to expose the runtime packing behaviors
and unpack the packed app, we leverage ETM [17] to track
the executed instructions of the packed app, and then analyze
the execution trace to recover the runtime method invocations
performed by the packed app. Meanwhile, we use HBRKs to
obtain the concrete parameter values of system functions at
runtime. After that, we determine the packing behaviors based
on the tracked information and select the proper Dex data
collection points for collecting the dynamically released Dex
data. Finally, we assemble the retrieved Dex data into a valid
Dex file that can be analyzed by the off-the-shelf static analysis
tools. To realize the whole process, we tackle three major
technical challenges. C1: the content (e.g., the dynamically
released Dex data) mapped in virtual memory are not loaded
into physical memory synchronously. To address C1, we design
a method to force the OS to load the virtually mapped pages
into physical memory. C2: there is a semantic gap between
the tracked instruction addresses and the high-level packing
behaviors. To handle C2, we build a mapping between system
functions (including system library methods and framework
APIs) and binary instructions in advance by resolving the
loaded system libraries and Android framework’s Oat files.
The mapping facilitates the recovery of the system functions
that has been invoked by the packed app. C3: advanced packers
release the hidden Dex data just before the data will be used by
the Android runtime, which prevents unpackers from retrieving
all the hidden data. To tackle C3, we propose an approach
to force the packed app to release all the hidden Dex data to
virtual memory at runtime.

We conduct extensive experiments with 12 commercial
Android packers and more than 24k Android apps to evaluate
Happer. The results show that Happer observed 27 packing
behaviors, 17 of which have not been elaborated by previous
studies. Based on the observed packing behaviors, Happer
adopted proper approaches to collect all the hidden Dex data
and assembled them to valid Dex files.

In summary, we make the following contributions:

• We propose the first hardware-assisted approach to scruti-
nizing the packing behaviors and then unpacking the packed
app accordingly. Our approach is effective, extensible and
adaptive to the ever-evolving packers.

• We develop a new unpacking tool named Happer after
tackling multiple technical challenges, and it is released at
https://github.com/rewhy/happer.
• We perform extensive experiments using 12 commercial

packers and more than 24k apps. Happer observed 27
packing behaviors, 17 of which have not been thoroughly
reported. Besides, Happer can retrieve all hidden Dex data
of the packed apps and resemble them to valid Dex files.

II. BACKGROUND

A. Hardware Features of ARM Platform

The ARM architecture defines non-invasive and invasive
tracing features to perform the tracing tasks [11]. The non-
invasive tracing components monitor the target process whereas
the invasive tracing components not only monitor the target
process but also control it. In this paper, we exploit the non-
invasive tracking component ETM and the invasive tracking
component HBRKs to conduct dynamic tracking.

ETM traces the instructions and data by monitoring the
instruction and data buses directly with little additional
overhead [17]. During tracing, ETM generates trace elements
containing the instruction and data information for recovering
the program’s runtime execution traces. There are 30 types of
trace elements, and they are produced in the form of stream
and stored in a 64 KB on-chip buffer or an up to 4 GB external
device (i.e., DSTREAM). We focus on resolving the Address and
the Context elements from the stream, because they carry the
tracked instruction’s virtual address and the traced program’s
context identifier (i.e., PID), which are used to recover the
runtime behaviors of the tracked app (§V-A) and filter out
irrelevant trace elements (§IV-A), respectively.

HBRKs are proposed to interrupt the process during tracing.
When a HBRK is hit, a debugging event will rise and then the
debugger/tracker can handle this event and let the processor
enter debugging mode. Different from the software breakpoints
(SBRKs) that need to replace the original instructions with brk
instructions, HBRKs do not change original instructions, and
thus HBRKs are harder to be noticed.

B. A Motivating Example

Fig. 1 presents the code snippets of a motivating example
for Happer, which is summarized according to the packing
behaviors of real commercial packers. The example consists of
a simplified static initialization code for an app class (Fig. 1a)
and a representative implementation of a native library of the
app, which is added by the packer (Fig. 1b).

As shown in Fig. 1a, the packer inserts the declarations of 4
JNI methods (Line 1-4) and a static initialization code (Line 6-
11) to the packed app. Meanwhile, the original bytecode of the
onCreate callback (Line 5) is replaced with the stub code, i.e.,
the return-void instruction. To ensure that the inserted JNI
methods (i.e., the behaviors of packers) are executed before the
protected bytecode, invocations to these methods are placed
in the static initialization method, because such method will
always be executed before any other code in this class.

2

 1 public native void selfCheck();
 2 public native void detectEnvironment();
 3 public native void preventUnpacking();
 4 public native void recoverDexData();
 5 protected void onCreate(Bundle bundle) {} // "return-void"
 // The static initialization method declared in the Application class
 // Or the attachBaseContext method defined in the Application class
 6 static {
 7 selfCheck(); // Check the integrity of the protected Dex file
 8 detectEnvironment(); // Detect the running environment
 9 preventUnpacking(); // Prevent the collection of the related Dex data
10 recoverDexData(); // Recover the bytecode of the onCreate method
11 }

 1 void detectEnvironment() { // Detect the running environment
 2 if (isDebugger() || isEmulator() || isDBIFramework())
 3 kill(); // Terminate the process
 4 }
 5 void preventUnpacking() { // Prevent the Dex data from being collected
 6 hookLibcFunction(); // Hook the system methods declared in libc.so
 7 hookLiblogFunction(); // Hook the system methods declared in liblog.so
 8 }
 9 void recoverDexData() { // Recover the Dex data of the packed Dex file
10 adjustDexData(); // Override or readdress the protected Dex data
11 }

(a) The implementation of the protected Dex file in the packed app.

 1 public native void selfCheck();
 2 public native void detectEnvironment();
 3 public native void preventUnpacking();
 4 public native void recoverDexData();
 5 protected void onCreate(Bundle bundle) {} // "return-void"
 // The static initialization method declared in the Application class
 // Or the attachBaseContext method defined in the Application class
 6 static {
 7 selfCheck(); // Check the integrity of the protected Dex file
 8 detectEnvironment(); // Detect the running environment
 9 preventUnpacking(); // Prevent the collection of the related Dex data
10 recoverDexData(); // Recover the bytecode of the onCreate method
11 }

 1 void selfCheck() { // Detect the presence of brk instruction
 2 if (detectBrkInstruction())
 3 kill(); // Kill the process
 4 }
 5 void detectEnvironment() { // Examine the running environment
 6 if (isDebugger() || isEmulator() || isDBIFramework())
 7 kill(); // Terminate the process
 8 }
 9 void preventUnpacking() { // Prevent the Dex data from being collected
10 hookLibcFunction(); // Hook the system methods declared in libc.so
11 hookLiblogFunction(); // Hook the system methods declared in liblog.so
12 }
13 void recoverDexData() { // Recover the Dex data of the packed Dex file
14 adjustDexData(); // Override or readdress the protected Dex data
15 }

(b) The implementation of the native library in the packed app.

Fig. 1: A motivating packed app.

The implementations of the inserted JNI methods are shown
in Fig. 1b. selfCheck detects the presence of brk in virtual
memory (Line 1-4). Once found, the packed app will terminate
itself. Otherwise, detectEnvironment examines whether the
packed app is running in an emulator, or a debugger, or a DBI
framework (Line 5-8). If the fingerprint of a particular running
environment is detected, the packed app will intentionally kill
itself. Moreover, to prevent the released Dex data from being
dumped via the methods provided by the system libraries (e.g.,
write defined in libc.so and __android_log_buf_write de-
fined in liblog.so), preventUnpacking hooks them (Line 9-
12) to disable their functionality or inspect whether they are
called to access the released Dex data. If all these checks are
passed, the packer calls recoverDexData to release the hidden
Dex data (Line 13-15) (i.e., the original bytecode of onCreate).

Existing unpackers (e.g., ZjDroid [36], and PackerGrind [72]),
which are implemented upon debuggers, emulators, or DBI
frameworks, fail to unpack this example, because they cannot
pass the check of the running environment. Similarly, the
unpackers (e.g., DexHunter [86], DexLego [56], TIRO [70],
AppSpear [53, 79], and android-unpacker [7]), which dump
the released Dex data by using system library methods (e.g.,
write), cannot unpack this example, because it hooks these
methods to prevent itself from being unpacked.

To overcome the limitations of existing unpackers, we design
and implement a novel hardware-assisted unpacker, named
Happer. It can circumvent all the aforementioned checks to
track the packer’s behaviors and retrieve the hidden Dex data by
leveraging the hardware features of the ARM platform. Happer
also assembles the collected Dex data to valid Dex files as the
unpacking results, which can be fed to existing app analysis
tools (e.g., FlowDroid [39]).

III. HIGH-LEVEL SYSTEM DESIGN

In this section, we introduce the overview (§III-A) and the
workflow (§III-B) of Happer. Then, we discuss the encountered

Host Computer

APP

ARMv8 Platform

Android System

User Space

Kernel Space

ETM MMU HBRKs
Tracking

Information

Behavior Loading

Behavior Specification

Dynamic Tracking Dex Data

Exe Trace
Dex Data

Collection Points

Behavior Analyzing

Dex Unpacking

Dex FilePacking Behaviors

Tracking
Specification

Online Offline

1
2

3

4

5
6

7

8

9

Fig. 2: The overview and workflow of Happer.

technical challenges and the corresponding solutions (§III-C).

A. Overview

As shown in Fig. 2, Happer consists of an ARMv8 platform
for conducting the dynamic tracking and a host computer for
controlling the tracing task, analyzing the retrieved information,
and assembling the collected Dex data. Happer takes in the
packed app and the behavior specifications that instruct Happer
to track the packing behaviors. Then, Happer will output the
observed packing behaviors and the reassembled Dex file. Note
that, in order to extend the types of packing behaviors supported
by Happer, we provide a domain-specific language (§V-B) for
analysts to specify the packing behaviors to be tracked.

Happer requires no modification to the Android system and
the packed app under analysis, because it uses the hardware
features to track the packing behaviors and unpack the app. To
minimize the additional overhead introduced to the execution
of the packed app, the behavior specifications for setting up
the tracing tasks and the dynamically retrieved data will be
processed on the host computer rather than the ARM platform.
More specifically, the host computer consists of an online and
an offline component. The online component loads and parses
the input behavior specifications and then instructs the ARM
platform to conduct the real-time tracking and retrieve the
runtime data (e.g., the execution trace, the released Dex data,
and the demanded memory content). Since analyzing packing
behaviors and assembling Dex data are time-consuming tasks,
they are carried out by the offline component.
Assumption: We assume that packers cannot gain the root
privilege to load a kernel module that detects the presence of
Happer by inspecting the values of the registers for configuring
ETM. This assumption is rational because Google has adopted
various strategies to protect the kernel of Android system [31],
and smartphone vendors also use the techniques, such as
SPLIT KERNEL [52] and RootGuard [64], to further harden
the kernels of their customized Android systems.

B. Workflow

Given a packed app, Happer analyzes it through three phases.
(1) Monitoring Runtime Behaviors (§IV). In this phase,
Happer loads and parses the behavior specifications (Step ¬),
and then instructs the ARM platform to launch the packed app
(Step) and conduct the tracing task (Step ®). Meanwhile,
Happer retrieves the necessary runtime data for determining
packing behaviors, including the ETM stream, the demanded
memory content, and the released Dex data (Step ¯).
(2) Analyzing Packing Behaviors (§V). In this phase, Happer
parses the ETM stream to recover the runtime method invo-
cations conducted by the packed app (Step °). Then, Happer

3

determines the packing behaviors according to the resolved
method invocations, the retrieved memory content, and the
dumped Dex data (Step ±).
(3) Unpacking Packed Apps (§VI). In this phase, Happer
retrieves the dynamically released Dex data and then assembles
them to a Dex file as the unpacking result. More specifically,
according to the recognized packing behaviors, Happer selects
the proper Dex data collection points (Step ²) and instructs
the online component to dump the relevant Dex data (Step ³).
Then, the offline component assembles the retrieved Dex data
to a valid Dex file (Step ´).

C. Challenges and Solutions

Developing Happer based on the hardware features of ARM
platform needs to address the following three challenges.
C1: Fetching Memory Data. Unlike self-hosted debuggers
that run along with the target process and fetch the memory data
from virtual memory, Happer works as an external debugger
and retrieves data from physical memory. However, not all the
data mapped in virtual memory is loaded into physical memory
by the OS synchronously. For example, if a process uses mmap
to load a file into virtual memory, its content is just actually
loaded into physical memory when being accessed. If the data
accessed by a process is not in physical memory, a page fault
will be triggered, and then the kernel will load the required
data into physical memory.
Solution: We propose a DBI-based approach, which will insert
additional instructions to the memory and make OS execute
the instructions to completely load the demanded data (e.g., the
dynamically released Dex file) into physical memory before
Happer retrieves the data. More details are presented in §IV-B.
C2: Resolving ETM Stream. Existing ETM stream resolvers
(e.g., ptm2human [10] and ds-5 [9]) focus on parsing the
virtual addresses of the tracked instructions. However, detecting
packing behaviors also requires high-level semantic information,
such as framework and native method invocations. Hence, there
is a semantic gap between the packing behaviors and the tracked
information resolved by the existing resolvers.
Solution: To bridge this semantic gap, we design a new
resolver to resolve instruction-level information from ETM
stream and also map them to the native level and framework
method level information by parsing the information from the
loaded system libraries and Oat files [20].
C3: Collecting Dex data. Advanced packers (e.g., Ijiami [19]
and Kiwi [24]) release the hidden Dex data just before it is
used by Android runtime. Since existing unpackers cannot let
these packers release all hidden Dex data during unpacking,
the recovered Dex files do not contain all hidden Dex data.
Solution: To force the packed app to release all the hidden Dex
data, we propose a hook-based approach, which will adjust
the execution flows of the Android runtime by modifying the
memory data and the register values. Specifically, according
to the identified packing behaviors of the target app, we hook
specific system library methods that are called by the Android

runtime to resolve the Dex data. More details about collecting
the Dex data are elaborated in §VI-B.

IV. MONITORING RUNTIME BEHAVIORS

This section elaborates how Happer monitors the packing
behaviors of the packed apps, including tracking the execution
flows (§IV-A) and fetching the memory data (§IV-B).

A. Tracing Execution Flow

Happer uses ETM, especially the context ID tracing and the
branch broadcasting tracing functionality, to track the execution
flows of the packed app. Note that, to tackle the issue that
the capacity of the on-chip buffer (64KB) is insufficient for
storing the generated ETM stream, we use DSTREAM, a dedicated
off-chip device with 4GB buffer, to store the ETM stream.
(1) Context ID Tracing: To monitor the packed app’s packing
behaviors, Happer needs to track the app’s runtime execution
flows. Note that, by default, ETM will record the target address
of each indirect branch instruction executed by CPU. To filter
out the irrelevant trace elements, Happer enables and configures
the context ID tracing of ETM to make it only trace the process
that corresponds to the packed app.

Specifically, Happer sets the CID field of TRCCONFIGR to 0x1.
Then, Happer writes the packed app’s PID to the TRCCIDCVR0
register and changes the COMP0 field of TRCCIDCCTLR0 to 0x1,
which makes ETM only track the execution flows of a specific
process according to the PID value stored in TRCCIDCVR0.
(2) Branch Broadcast Tracing: By default, ETM only records
the target address of each executed indirect branch instruction.
However, to recover the runtime method invocations of the
packed app, the target addresses of both the direct and indirect
branch instructions are needed, because both of them can lead
to the method invocations. To this end, Happer enables the
branch broadcast tracking of ETM to make it also record the
target address of each executed direct branch instruction.

Specifically, Happer enables the branch broadcast tracing
by setting the BB field of TRCCONFIGR to 0x1. Then, to specify
the memory region for applying the branch broadcast tracing,
Happer writes 0x0 and 0xffffffff to TRCACVR0 and TRCACVR1,
respectively, which indicates that the branch broadcast tracing
will be conducted within the entire virtual memory space of the
packed app. Subsequently, we set the RANGE field of TRCBBCTLR
to 0x1, which instructs ETM to also record the target address
of each executed direct branch instruction.

B. Fetching Memory Data

Working as an external debugger, Happer cannot access
virtual memory of the packed app, because the packed app
does not share the same context with Happer. To retrieve the
data in the packed app’s virtual memory, Happer takes 2 steps.
First, Happer calculates the physical address of the demanded
data according to its virtual address. Second, Happer instructs
the OS to completely load the demanded data into physical
memory before Happer retrieves the data. We elaborate more
on these 2 steps as follows. The MMU registers used for
fetching the memory data are summarized in Appendix-A.

4

Algorithm 1: Loading unmapped physical memory data.
input : addr is the start address of the target virtual memory space;

size is the size of the target virtual memory space.
1 Function force_loading(addr, size):
2 if require_force_loading(addr, size) == false then
3 V Acode = code_mem_determine()
4 PCexe = backup_execution_environment(V Acode)
5 do_force_loading_wrapper(V Acode, addr, size)
6 restore_execution_environment(PCexe)
7 end
8 return

Dex file) is loaded into the memory with the page granularity
in normal cases, and then we iteratively access the physical
address of each slice according to the approach introduced in
§IV-B1. If MMU fails to perform the address translation on a
slice (i.e., the field F of PAR_EL1 equals 0x1), which implies the
target data has not been completely loaded, and then Happer
will take the charge of loading the target data into the physical
memory. Otherwise, Happer does not require to perform any
further operation.

Procedure-2: Happer makes the operating system load the
target data into the physical memory by inserting specific force-
loading code/instructions. Thus a virtual memory page with
the permission rwx (i.e., readable, writable, and executable) is
required for storing the force-loading code but the executable
and writable permissions are usually not met at the same
time due to the security consideration [36]. Therefore, Happer
needs to change the selected memory page’s permissions,
which are described by the page descriptor. Precisely, Happer
first obtains the physical address of the translation table4

according to the field BADDR of the translation table base
register TTBR0_EL1 and then looks up the descriptor of the
target memory page in the translation table. Since the fields
UXN and AP of the page descriptor determine the executable
permission and the data access (i.e., readable and writable)
permission, respectively, Happer modifies the values of these
fields to adjust the permissions of the selected memory page
that is going to hold the force-loading code.

In practice, in Line 3, Happer first randomly finds an exe-
cutable memory page (V Acode). In do_force_loading_wrapper
at Line 5, Happer makes the selected memory page V Acode be
writable through setting the value of AP to 0x01 and writes the
force-loading code (i.e., memory_force_loading in Fig. 3) to the
memory address V Acode, which is then executed to load the
target data. Note that, in order to avoid destroying the original
execution context, Happer stores and restores the context infor-
mation, including the modified page descriptor, the overrode
memory content, and the values of the changed registers (i.e.,
PC, R0, and R1), before and after do_force_loading_wrapper (i.e.,
Line 4 and 6), respectively.

The details about the force-loading code is shown in fig-
ure 3. The memory_force_loading procedure takes the beginning
address addr and the size size of the target data to be loaded
as the inputs. Then the force-loading code leverages the LDR
instruction to access each data slice and the operating system
will transparently load the target data into the physical memory.

4A table held in the physical memory that defines the properties of memory
areas of various sizes from 1KB to 1MB.

 1 procedure memory_force_loading(addr, size) {
 2 ; The register r0 stores the virtual memory address of the file to be loaded.
 3 ; The register r1 stores the size of the entire file.
 4 push {r0, r1, r2, r3} ; Store the registers r0-r3
 5 mov r2, r1 / PAGE_SIZE + 0x1 ; Calculate time for loading the whole file
 6 mov r3, #0x0 ; Store the loop index into register r3
 7 ldr r1, [r0] < ; Force loading the data addressed by r0
 8 add r0, PAGE_SIZE | ; Adjust to the next memory access point
 9 add r3, 0x1 | ; Increase the loop count.
10 cmp r3, r2 | ; Judge whether the task has been finished
11 bne {pc} - #0xc > ; To load next memory page
12 pop {r0, r1, r2, r3} ; Restore the registers r0-r3.
13 }

Fig. 3: The instrumentation code for loading the data.

V. ANALYZING PACKING BEHAVIOR

In this section, we detail the design of the packing behavior
analyzer, including the ETM stream resolving (§V-A) and the
packing behavior determining (§V-B). Note that, the users can
also define new behaviors following the rules introduced in
Appendix B in the configuration file and then Happer will load
the behaviors from the configuration file when it start.

A. Resolving ETM Stream

To understand the packing behaviors, Happer demands to
identify the system methods invoked by the packed apps.
However, none of the OTS ETM stream resolvers meet the
requirement. Therefore, we implement a new one. More
specifically, we first build a map between the virtual instruction
addresses and the system methods (§V-A1). And then, relying
on the map, we resolve the corresponding system methods
for the tracked instructions, and further determine the system
methods invoked by the packed app (§V-A2).

1) Constructing Address-Method Map: To facilitate the iden-
tification of the system methods invoked by the packed app,
we build a map between the virtual instruction addresses and
the system methods via combining the memory map of the
packed app with the decompiled information about the system
libraries and the framework Oat files.

In detail, Happer first retrieves the memory information
about the loaded files, including the system libraries and
the framework Oat files, from the “/proc/#pid/maps”.
Specifically, in this process, we obtain the executable memory
region V Aexec of each loaded system library and the framework
Oat file. And then, we leverage the tools objdump [29] and
oatdump [28] to respectively disassemble the libraries and the
Oat files. At this point, we retrieve the file offset FOinst of
each decompiled instruction.

However, the exact virtual address V Ainst of the instruction
is not equal to the result of directly adding FOinst to V Aexec

because the file offset (i.e., FOinst) and the virtual offset (i.e.,
V Oinst) for a common instruction are usually inconsistent. To
address this issue, we calculate the difference (δgap) between
the two types of offsets through the Equation 2. Precisely,
for the instructions in the system libraries, Happer leverages
objdump to retrieve the virtual memory offset (V Otext) and the
file offset (FOtext) of the library’s .text section. Meanwhile,
for the instructions in the framework Oat files, Happer uses
oatdump to obtain the file offset of the Oat file’s .oatexec
section (FOexec). Afterwards, V Ainst is calculated with the
equation 3.

Then, we store the calculated virtual instruction address
V Ainst and its corresponding system method method into the
structure map{V Ainst 7→method}, which will be further used

6

Fig. 3: Loading unmapped data into physical memory.

(1) Calculating Physical Memory Address: Since the traced
process, corresponding to the packed app, manipulates the data
in virtual memory, Happer transfers the virtual memory address
to its corresponding physical memory address in order to fetch
the target data. In practice, Happer uses MMU to achieve this
purpose and more details are presented in Appendix-B.
(2) Loading Memory Data: To address the challenging issue
that the data mapped in virtual memory may not be loaded into
physical memory synchronously (C1), we propose an approach
to force the OS to completely load the data into physical
memory before Happer fetches it. Our approach consists of 2
steps as shown in Fig.3.

In the first step, referring to require_force_loading at Line 2,
Happer checks whether the data has already been completely
loaded into physical memory. In particular, since the data (e.g.,
the hidden Dex file) is loaded into virtual memory with the
page granularity [38], we split the memory region, storing the
data, into several memory slices according to the page size.
Then, we calculate the physical address of each slice by using
MMU in order to check whether the data has been completely
loaded into physical memory. If MMU fails to calculate the
physical address of a particular slice, namely the F field of
PAR_EL1 is 0x1, the data has not been entirely loaded. Thus,
Happer will force the OS to load the target data.

In the second step (in Line 3-6), Happer forces the OS to
load the data into physical memory. We first insert instructions
for loading the target data to a particular memory region with
the rwx permission (i.e., readable, writable, and executable),
and then we instruct CPU to execute these instructions.

However, it is non-trivial to find a suitable memory region be-
cause the executable permission and the writable permission are
rarely enabled together due to the security consideration [31].
Instead, we enable the writable permission of an executable
memory region. Specifically, in code_mem_determine at Line 3,
Happer obtains the physical address of the translation table1

according to the BADDR field of TTBR0_EL1. Then, Happer finds
a page descriptor with its UXN field set to 0x1, which indicates
that the corresponding memory region is executable. Note that,
before Happer sets the AP field of the found page descriptor to
0x01, which makes the associated memory region readable and
writable, in backup_execution_environment at Line 4, we back
up the context information, including the page descriptor value,
the content of the corresponding memory region, and the values
of PC, R0, and R1 registers, because this context information

1The translation table is placed in physical memory, and it defines the
properties of different memory regions with various sizes from 1KB to 1MB.

Algorithm 2: Identifying invocations to system methods.
input : address is the address of an instruction recorded by ETM;

pre_address is the address of the last handled instruction;
map is the mapping from instruction address to system method.

output : call, the cross-layer method call graph;
1 Function identify_normal_invocation(address, pre_address, map):
2 if address is the start address of a system method then
3 method = map[address]
4 if pre_address is an instruction of the target app then
5
6

pre_invoke = method
call.add(<method, NORM>) // Invocation to library function.

7 end
8 if stack.peek(1)==quick_trampoline and stack.peek(2)==APP∗ then
9 call.add(<method, NORM>) // Invocation to Oat method.

10 end
11 if pre_address == invoke_stub and pre_invoke == JNI_CALL then
12 call.add(<method, REFL>) // JNI reflection invocation.
13 end
14 end
15 return

* APP presented in the algorithm refers to the method defined in the target app.

to facilitate the identification of the system methods invoked
by the packed app.

δgap =

{
FOtext − V Otext (System libraries)

0− FOexec (Oat files)
(2)

V Ainst = V Aexec + (FOinst + δgap) (3)

2) Resolving Method Invocation: Relying on the constructed
address-method map, we further link the resolved instruction ad-
dresses with the corresponding system methods, and determine
the system methods invoked by the packed app. Algorithm 2
illustrates the details about such a method invocation resolving
process. A system method is potentially invoked if the target
address of the branch instruction (i.e., the tracked instruction
address) corresponds to the first instruction address of a
specific system method (Line 2). If an invocation to the system
method has been determined, we query the map to obtain the
corresponding method (Line 3). Afterwards, Happer further
analyzes the invocation type of the determined system method
(Line 4-13).

Intuitively, there are three ways for the packed app to
invoke a system method. If the system method is directly
invoked by the app (Line 4) and Happer adds the invoked
method to the call graph that stores the function call information
(Line 6). Whereas Line 8-10 refer to a normal invocation to
the Oat method. Precisely, we locate the target Oat method
(i.e., method) based on the call convention that the customized
app method (i.e., APP∗ at Line 8) just calls the ART runtime
function art_quick_resolution_trampoline (i.e., quick_trampoline
at Line 8), which actually invokes the target Oat method
method. An Oat method can also be invoked through JNI
reflection (Line 11-13). To determine such an invocation, we
vet the relevant implementation of the Android system and
find, during JNI reflection invocation, the ART runtime function
JNI::Callxxxx or JNI::NewObjectxxxx (i.e., JNI_CALL at Line 11)
is first invoked and then art_quick_invoke_stub_internal (i.e.,
invoke_stub at Line 11) is further leveraged to invoke the target
Oat method. Note that all resolved method invocations are added
to the call graph (Line 6, 9, and 12). Moreover, we also identify
the invocations to the hooked system library functions (more
details in Appendix-A1) because the sophisticated packers can
hook special system library functions to prevent the memory
data from being dumped by calling such functions (§V-B5).

B. Identifying Packing Behavior

We determine the packing behaviors performed by the packed
apps according to the dynamically tracked events. By default,
Happer identifies ten types of the packing behaviors based on
the resolving results, which are summarized in Table IX.

1) Anti-Debugging (ADG): Packers usually leverage the anti-
debugging techniques to prevent the protected Dex file from
being analyzed by debuggers. In Table IX, we list six types
of ADG behaviors that are currently supported by Happer, and
they can be divided into four groups. ¬ Packers invoke specific
framework APIs (e.g., Debug.isDebuggerConnected) to detect
the presence of debuggers (i.e., ADG-1). Packers sequentially
call the system library functions fork and ptrace to attach the
created process to the protected app, which prevents debuggers
injecting their processes into the packed app (i.e., ADG-2). ®
Packers examine the status of the protected app’s process to
check whether it has been attached by debuggers (i.e., ADG-
4/5/6). ¯ Packers hook the debugging related system methods
to prevent debuggers invoke them.

Accordingly, Happer adopts different rules to identify the
ADG behaviors. ¬ For ADG-1, Happer inspects the call graph
to identify whether the framework API isDebuggerConnected
has been called by the packed app. For ADG-2, Happer first
checks whether the fork system method has been invoked.
And then, since the system library function ptrace is called
by the created process, whose execution flow is not included
in the recorded ETM stream, Happer alternatively accesses
the /proc/pid/status file (or the /proc/self/status file)
to check whether the protected app has been attached with a
parent process. ® For ADG-3, Happer set HBRKs to the system
library functions fopen, fgets, and strncmp to determine
whether the packer examines its process status to retrieve the
tracer PID. For ADG-4/5/6, Happer reviews the hook set to find
whether the debug related system methods have been hooked
by packers.

2) Anti-Emulator (AEU): Advanced packers usually prevent
the packed app from being ran in Android emulators (or
virtual machines) because a number of Android dynamic
analysis frameworks [49, 61, 67, 75, 76, 78] are implemented
relying on the virtual machine introspection technique [53].
Table IX presents three types of AEU behaviors supported by
Happer. More specifically, since packers detects the presence
of Android emulators via inspecting the values stored in the
Qemu related system files (e.g., the /proc/tty/drivers file
contains the registered virtual TTY driver for Qemu) or the Qemu
involved system properties (e.g., init.svc.qemud), Happer
determines such behaviors, including AEU-1/2/3, through mon-
itoring the invocations to the system methods (e.g., fopen and
__system_property_get) and then tracking the constant string
comparisons conducted by the packed app.

3) Anti-DBI (ADI): Various DBI tools [18, 43] have been pro-
posed to analyze the Android apps, therefore the sophisticated
packers also detect the presence of DBI frameworks to protect
the packed app from being analyzed or unpacked. Table IX
lists an approach for Happer to identify a type of ADI behavior
performed by packers. In detail, relying on the observation that
packers access the /proc/pid/maps file to search for the
fingerprint of ZjDroid [44] (i.e., the name of this unpacking

7

Fig. 4: Identifying invocations to system library methods.

will then be modified. Meanwhile, we also store the virtual
address of the found memory region to V Acode. After that,
we write the instructions for loading the data to the found
memory region and set the PC register to V Acode so that the OS
will execute the instructions (i.e., do_force_loading_wrapper at
Line 5). Finally, in restore_execution_environment, we recover
the original context information and resume the execution. The
inserted loading instructions are presented in Appendix-C.

V. ANALYZING PACKING BEHAVIORS

This section details how Happer finds the packing behaviors
according to the tracked information, including resolving the
ETM stream (in §V-A) and identifying the packing behaviors (in
§V-C). Meanwhile, in §V-B, we introduce the domain-specific
language for specifying the packing behaviors.

A. Resolving ETM Stream

To identify the packing behaviors, Happer needs to get the
system functions (i.e., framework APIs and system library
methods) that have been invoked by the packed app at runtime
from the ETM stream. However, none of existing ETM stream
resolvers can achieve this purpose (C2). Therefore, we develop
a new resolver that maps instruction addresses to system
functions in advance and then recognizes the invoked system
functions according to the addresses of the tracked instructions.
(1) Constructing Address-Function Mapping: To assist the
identification of the invoked system functions, we construct a
mapping between instruction addresses and system functions
by analyzing the memory map of the packed app and the
disassembled information extracted from system libraries and
Oat files. Since constructing the address-function mapping is a
common practice for dynamic app analysis tools [73, 77, 78],
we leave the details of our process in Appendix-D.
(2) Resolving Method Invocation: Leveraging the constructed
address-function mapping, Happer determines the system func-
tions invoked by the packed app through resolving the addresses
of the tracked instructions as shown in Fig.4. Specifically, in
Line 2, we examine whether the address of a tracked instruction
(i.e., the input address) is the start address of a system function.
If so, an invocation to the system function is found. Since a

5

grammar Expr;

prog: (statement NEWLINE)* ;

statement: compoundStmt

| assignStmt
| ifStmt
| exprStmt
| LINECOMMENT
| NEWLINE ;

compoundStmt: '{' statement* '}' ;
assignStmt: ('var')? IDENTIFIER '<-' basicExpr ';' ;
ifStmt: 'if' '(' condExpr ')' statement ('else' statement)? ;
exprStmt: (condExpr | basicExpr)? ';' ;
condExpr: basicExpr ('==') basicExpr

| basicExpr ('!=') basicExpr
| '(' condExpr ')'

 ... ;

basicExpr: basicExpr ('*' | '/') basicExpr
| basicExpr ('+' | '-') basicExpr
| funcExpr
| INT
| STRING
| IDENTIFIER ;

exprList: basicExpr
| exprList ',' basicExpr ;

funcExpr: 'getRegValue' '(' exprList ')'
| 'setRegValue' '(' exprList ')'

 ... ;
INT: [0-9]+ ;
STRING: '"'([a-zA-Z0-9_:/.\\@-]*)'"' ;
IDENTIFIER: [a-zA-Z_][a-zA-Z0-9_]* ;
NEWLINE: [\r\n]+ ;
LINECOMMENT: '//' ~[\r\n]* ;
WS: [\t]+

-> skip ;

Fig. 5: The core grammar specification for BDL.

system function can be invoked by either the packed app or
other system functions, we further determine whether or not
the system function is called by the packed app in Line 4-13
to be explained as follows.

Since the packed app can adopt three ways to invoke a system
function, we design different mechanisms to handle them. First,
Line 4-6 handles the invocation to the system library method.
If the tracked instruction presents just before the execution of
a system library method and the instruction is located in the
code segment of the packed app, a system library method is
found to be invoked by the packed app. Second, Line 8-10
handles the invocation to the framework API. If the packed
app’s code (i.e., APP∗ at Line 8) calls the ART runtime func-
tion art_quick_resolution_trampoline (i.e., quick_trampoline at
Line 8), a framework API is found to be invoked by the packed
app. Third, Line 11-13 handles the case that the framework API
is invoked by JNI reflection. If there is an invocation from the
function JNI::Callxxxx or JNI::NewObjectxxxx (i.e., JNI_CALL
at Line 11) to art_quick_invoke_stub_internal (i.e., invoke_stub
at Line 11), a framework API is found to be invoked by the
packed app through JNI reflection.

Since advanced packers may hook system library methods to
protect the released Dex data from being dumped by unpackers,
we determine such packing behaviors by identifying the hooked
system library methods that were invoked by the packed app.
More details are presented in Appendix-E.

B. Behavior Description Language (BDL)

The packers evolve frequently to evade unpacking and
correspondingly the unpackers should have high scalability
to handle the newly adopted packing behaviors. Consequently,
inspired by the domain-specific language [50, 51], we propose
a specific packing behavior description language (i.e., BDL)
based on ANTLR [37], which simplifies the extension of Happer
to monitor new packing behaviors and does not require the
analysts know the implementation details of Happer.

Fig. 5 shows the core grammar specification for BDL,
including two major types of syntax, namely BDL statement
and BDL expression. A behavior specification is composed of
a sequence of one or more BDL statements, each of which
specifies a BDL operation, such as assigning a value to a
BDL variable or invoking a BDL function. More specifically,
there are four types of BDL statements, including expression-
statement (exprStmt), compound-statement (compoundStmt),
if-statement (ifStmt), and assignment-statement (assignStmt),
which are used to specify a common operation (e.g., invoking

TABLE II: A summary of packing behaviors.

Type Description Behaviors

ADG Checking fingerprints of debuggers. ADG-1/2/3/4/5/6

AEU Checking fingerprints of emulators. AEU-1/2/3

ADI Checking fingerprints of DBI frameworks. ADI-1

TCK Checking time delays incurred by dynamic analysis tools. TCK-1/2

SLH Hooking debug/unpack related system library methods. SLH-1/2/3

DDL Loading protected Dex files at runtime. DDL-1/2/3

DDM Modifying content of protected Dex files. DDM-1/2/3/4

DOM Modifying relevant ART runtime objects. DOM-1/2

DDF Dispersedly loading content of protected Dex files. DDF-1/2

JNT Translating app’s function to the native code. JNT-1

a BDL function), a block of statements describing a complex
operation (e.g., assigning a value to a variable and then passing
the variable to a BDL function), a conditional operation, and
a variable assignment operation, respectively.

BDL can be employed to extend Happer to monitor any
packing behaviors composed of one or more BDL operations.
Meanwhile, analysts can configure Happer to just monitor
their interested behaviors using BDL for improving efficiency.
Moreover, we have used BDL to define the packing behaviors
presented in this paper. More details of BDL are presented in
Appendix-F with an example.

C. Identifying Packing Behavior

According to the behavior specifications, Happer identifies
packing behaviors based on the tracked information. As summa-
rized in Table II, Happer currently supports 10 categories of
packing behaviors, including 27 distinct behaviors in total,
which are identified after inspecting more than 24k apps
and 12 commercial packers. We will include more behavior
specifications once new packing behaviors are found in future
work. Moreover, by releasing Happer, we encourage users to
contribute more behavior specifications. In this section, we
introduce the implementation details of the identified packing
behaviors as well as how Happer detects them.
(1) Anti-Debugging (ADG): Packers use ADG to prevent them
from being analyzed by debuggers. Commonly, there are 6
ways for packers to conduct ADG, which could be divided
into 4 groups. ¬ Packers invoke Debug.isDebuggerConnected
to detect the presence of debuggers (ADG-1). Packers call
fork and ptrace to attach the forked process to the packed
app, which can prevent the packed app from being attached
by debuggers (ADG-2), because a process can be attached by
only one another process at a time. ® Packers examine the
process status of the packed app to check whether it is traced
by debuggers (ADG-3). ¯ Packers hook the system functions
related to debugging (i.e., Instrumentation::AddListener, Instru-
mentation::EnableMethodTracing, __android_log_buf_write)
to prevent them from being used by debuggers (ADG-4/5/6).
Detection: ¬ For ADG-1, Happer inspects the resolved method
invocations to check whether isDebuggerConnected has been
called. For ADG-2, Happer examines the method invocations
to determine whether fork has been invoked. If so, Happer

6

accesses the process status files (i.e., /proc/pid/status and
/proc/self/status) to check whether the process of the packed app
has been attached. ® For ADG-3, Happer sets HBRKs to system
library methods, fopen, fgets, and strncmp, and then checks their
runtime parameters to determine whether the packer searches
the “TracerPid” string in the process status file to know it has
been traced by debuggers. ¯ For ADG-4/5/6, Happer reviews the
resolved method invocations to check whether the debugging-
related system functions have been hooked.
(2) Anti-Emulator (AEU): Packers prevent themselves from
running in emulators (or VMs) because most dynamic analysis
frameworks [46, 58, 67, 74, 75, 78] are implemented based on
the virtual machine introspection (VMI) [47]. Packers usually
detect the presence of emulators via inspecting specific system
files (e.g., /proc/tty/drivers, which contains the name of the
registered virtual TTY driver for Qemu) (AEU-1), or checking
the existence or values of particular system properties (e.g.,
init.svc.qemud, which is introduced by Qemu) (AEU-2/3).
Detection: For AEU-1, Happer sets HBRKs to fopen, fscanf, and
strncmp, and examines their parameters to determine whether
the packer inspects the content of specific system files to
detect the emulator. Similarly, to identify AEU-2/3, Happer sets
HBRKs to __system_property_get and strncmp, and examines
their parameters to determine whether the packer inspects the
values of particular system properties to detect the emulator.
(3) Anti-DBI (ADI) Packers detect the presence of DBI frame-
works to avoid being instrumented and analyzed. Commonly,
packers access the file /proc/pid/maps and examine the memory
map of their processes to find whether the files associated with
DBI frameworks are presented in the memory (ADI-1).
Detection: Happer sets HBRKs to fopen, fgets, and strstr, in
order to obtain their runtime parameters, and then examines
the retrieved values to identify ADI-1.
(4) Time Checking (TCK): Dynamic app analysis introduces
additional delays to the execution of the packed app, and thus
packers infer whether they are being analyzed via calculating
the time consumed for executing a special task [69]. Commonly,
packers get the current time using the system library methods,
such as gettimeofday (TCK-1) and time (TCK-2).
Detection: For TCK-1, Happer sets a HBRK to gettimeofday
and retrieves the pointer that refers to the timeval structure
(i.e., the first parameter of gettimeofday). Then, Happer sets
another HBRK to the return address of gettimeofday and obtains
the value stored in the timeval structure. If it is not the first
time for the packed app to invoke gettimeofday, we add an
extra interval (more than one second in practice) to the obtained
time value and then replace the origin with the adjusted one,
which imitates the dynamic app analysis to add additional time
delays to the execution of the packed app. If the app crashes or
terminates unexpectedly, TCK-1 is identified. Similarly, Happer
follows the same steps to recognize TCK-2.
(5) System Library Hooking (SLH): Unpackers can use the
system library methods (e.g., ptrace, open, and write) to analyze
the packed app or dump the released Dex data. Accordingly,
packers may hook the related methods in system libraries,

libart.so (SLH-1), libc.so (SLH-2), or liblog.so
(SLH-3), to prevent them from being used by unpackers. In
particular, packers can implement SLH by using the GOT/PLT
hooking [27] or the inline hooking [5]. Since both of these
approaches need to override the original code of each hooked
method, packers will invalidate the instruction cache to ensure
that the logic of each hooked method changes as expected.
Detection: Happer sets a HBRK to the handler that deals with
the system call, __NR_clear_cache, and then retrieves the
range of the virtual memory region, on which the cache flush
operation is performed. If the region is included in the memory
space of a system library, the SLH behavior is found.
(6) Dynamic Dex File Loading (DDL): Packers may load the
hidden Dex file at runtime to prevent the packed app from being
analyzed statically. Commonly, there are 3 ways to implement
DDL. ¬ Packers initialize a class loader to perform the dynamic
Dex file loading (DDL-1). Packers call the methods (e.g.,
loadDex) of the DexFile class to load the Dex file at runtime
(DDL-2). ® Packers call the methods (e.g., makePathElements)
declared in the DexPathList class to dynamically load the
hidden Dex file (DDL-3).
Detection: To identify DDL-1/2/3, Happer inspects the resolved
method invocations to find whether the relevant system func-
tions have been invoked to perform the Dex file loading.
(7) Dynamic Dex Data Modification (DDM): Many unpack-
ers [7, 8, 86] adopt the one-pass unpacking mechanism [72]
to retrieve the dynamically released Dex data. To evade being
unpacked, packers may fill the original Dex items with invalid
data, and dynamically recover them right before they are used
by the Android runtime. There are 2 ways for packers to
recover the valid Dex items at runtime. ¬ Since packers may
load their native libraries before the release of the hidden
Dex files, they can call JNI_OnLoad to recover the Dex items,
e.g., header_item (DDM-1), class_def_items (DDM-2), and
encoded_methods (DDM-3). Since ClassLinker::LoadClass
is used by the ART runtime to parse the bytecode of the app
methods defined in a specific app class, packers can leverage
this method to recover the code_items (DDM-4).
Detection: To identify DDM-1/2/3, Happer sets a HBRK to the
instruction address, where the execution of JNI_OnLoad just
returns. To detect DDM-4, Happer sets a HBRK to LoadClass.
Once a HBRK is hit, Happer compares the in-memory Dex file
with that obtained when DexFile::<init> was called. If the Dex
files’ header_items, class_def_items, encoded_methods, or
code_items are different, DDM behaviors are noticed.
(8) Dynamic Runtime Object Modification (DOM): In ART
runtime, different types of Dex data are represented by various
runtime objects. For example, a class_def_item is denoted by
a mirror::Class object, and an encoded_method corresponds
to an ArtMethod instance. Exploiting this observation, packers
may adopt DOM to prevent the Dex data from being retrieved by
unpackers. There are 2 ways for the packed app to modify the
runtime objects. ¬ Packers hook ClassLinker::LoadMethod to
modify the ArtMethod objects (DOM-1). Packers introduce
or modify the static initialization method of each app class to

7

modify the relevant mirror::Class object (DOM-2).
Detection: Happer uses 2 approaches to identify DOM-1 and
DOM-2, respectively. ¬ Happer sets a HBRK to the start
address of LoadMethod and records its return address. Then,
Happer sets another 2 HBRKs to the last instruction and the
return address of LoadMethod, individually. When HBRKs
are hit, values stored in fields dex_code_item_offset_ and
access_flags_ of the related ArtMethod object are retrieved.
If differences are found among the retrieved values, DOM-1
is detected. Happer sets a HBRK to the return address of
LoadMethod and records the ArtMethod objects handled by
this method. Then, Happer sets HBRKs to the start address
of ClassLinker::InitializeClass and the address of a particular
instruction in this method, at which the invocation to the
static initialization method of an app class just returns. When
HBRKs are hit, Happer retrieves the ArtMethod objects stored
in the methods_ field of the mirror::Class object, the second
parameter of InitializeClass, and compares them with the
previously recorded ones.

However, it is nontrivial to locate the methods_ field due to
the complicated data structure of mirror::Class. To tackle this
issue, we leverage the observation that the clinit_thread_id
field of the mirror::Class object stores the PID value of the
packed app. Specifically, we locate the virtual memory address
of clinit_thread_id, and then compute the address of the
methods_ field according to the offset between the 2 fields. If
any ArtMethod object in methods_ has been modified by the
static initialization method of the app class, DOM-2 is found.
(9) Dex Data Fragmentation (DDF): Besides DDM and DOM,
dispersing the Dex items of the loaded Dex file can evade
the one-pass unpacking mechanism and prevent unpackers
from dumping the valid Dex data. Specifically, since different
types of Dex items are referenced according to their file offsets,
packers can release the protected Dex file’s class_data_items
(DDF-1) or code_items (DDF-2) to separated memory regions.
Detection: To detect DDF behaviors, Happer accesses the in-
memory Dex file when DexFile::<init> is invoked, and then
examines the offset of each class_data_item and code_item.
If an offset is out of the memory region that stores the Dex
file, a DDF behavior is found.
(10) JNI Transformation (JNT): Bytecode stored in the Dex
file can be reverse-engineered by disassemblers [13, 16, 21, 23,
34, 35]. Since it is more difficult to understand the semantic of
native code compared with the bytecode, packers may use the
native code to reimplement selected app methods, e.g., those
inherited from the Activity class (JNT-1).
Detection: Happer examines the resolved method invocations
to find whether the callbacks of app components’ parent classes
(e.g., Activity.onCreate) are invoked via JNI reflection. If so,
the JNT-1 behavior is detected.
Remark: Identifying packing behaviors is important for un-
packing. It empowers Happer to effectively (R1) and adaptively
(R3) unpack the app. First, according to the identified packing
behaviors, Happer can adopt various approaches to invalidate
the anti-analysis techniques (in §VIII). Second, Happer can

TABLE III: Dex data collection points.

Behavior Type Dex Data Collection Point
− − addr(DexFile::<init>, 0x0)

DDL 1-3 No additional Dex data collection point is required.

DDM
1-3 addr(JavaVMExt::LoadNativeLibrary, 0x75e)
4 The return address of the ClassLinker::LoadClass method.

DOM
1 The return address of the ClassLinker::LoadMethod method.
2 addr(ClassLinker::InitializeClass, 0x8d8)

DDF
1-2 No additional Dex data collection point is required.
3 The same as DDM-2/3 and DOM-1/2.

choose a proper way to efficiently unpack the app according to
the recognized packing behaviors (in §VI-A). Third, according
to the detected packing behaviors, Happer can employ the
effective approaches to retrieve all the hidden Dex data in
order to completely recover the Dex file (in §VI-B).

VI. UNPACKING APPS

Based on the identified packing behaviors, Happer chooses
the proper collection points to retrieve the dynamically released
Dex data (§VI-A and §VI-B), and then assembles the Dex data
to a valid Dex file (§VI-C).

A. Determining Dex Data Collection Points

We define 2 types of Dex data collection points, one for
obtaining the metadata (e.g., name, size, and start address) of
the in-memory Dex file and another for collecting the Dex items
of the Dex file. Table III lists the Dex data collection points for
different packing behaviors, where the symbol addr(method,
offset) refers to the instruction address located at the specified
offset in a particular system function.

More specifically, since DexFile::<init> will be called by
the ART runtime to create the DexFile object according to
the header item of the in-memory Dex file, Happer collects
the metadata when this method is invoked. Then, according to
the start address and the size of the Dex file, Happer retrieves
it from physical memory. Meanwhile, if the packed app has
DDF-1/2 behaviors, Happer collects the dispersed Dex items at
this point as well, because the in-memory Dex file contains the
Dex items that hold the offsets for locating the dispersed Dex
items. Moreover, if the packed app has DDM behaviors, Happer
retrieves the recovered Dex data separately when JNI_OnLoad
returns and the execution of ClassLinker::LoadClass finishes
according to the implementations of DDM (in §V-C). In addition,
if the packed app adopts DOM-1/2 to modify the ART runtime
objects, Happer retrieves the related Dex data before the returns
of ClassLinker::LoadMethod and ClassLinker::InitializeClass,
because the modified ART runtime objects have already been
filled with the valid data at these points.

B. Collecting Dex Data

To collect the hidden Dex data of the packed app, Happer
needs to locate the memory regions storing these data. Mean-
while, since advanced packers may release the hidden Dex
data right before the data is used by the Android runtime (C3),
Happer forces the packer to release all the hidden Dex data for
recovery. Happer locates the Dex data in virtual memory by
determining the start address and the size of the target data, and

8

the start address is obtained or calculated according to particular
register values or memory content at the Dex data collection
points (e.g., the register R1 points to the start address of the in-
memory Dex file when DexFile::<init> is called), but the size
of the Dex data cannot always be obtained directly. For instance,
the size of the Dex file can be directly obtained according to
the second parameter of DexFile::<init> and the size of each
class_def_item is always 32 bytes, whereas the size of each
class_data_item or code_item varies because their sizes are
determined by concrete Dex items. Hence, Happer dynamically
calculates the sizes of the Dex items to be dumped.

Specifically, since class_data_item is composed of the
uleb128 values (e.g., encoded_field) with distinct sizes,
we calculate its size by summing the lengths of all the
uleb128 values. Since code_item consists of various fields
(e.g., insns, tries_size, and padding) storing the data
related to the bytecode of the ART method, we compute the
size of code_item based on the lengths of all these fields.
Particularly, code_item is 4-byte aligned and uses padding
to meet the requirement. Consequently, if insns contains odd
number of Dalvik bytecode and tries_size is non-zero, the
size of padding is 2 bytes, otherwise, the size of padding is
zero. Accordingly, Happer first gets the size of the padding
field and then calculates the entire length of code_item.

Besides the task of locating the dynamically released Dex
data, Happer will force the packed app to release all the hidden
Dex data so that Happer can completely recover Dex file of the
packed app. According to the packing behaviors disclosed in
§V-C, packers with DDM-4 and DOM-1/2 behaviors release the
hidden Dex data right before the data is used by the Android
runtime. Unfortunately, to our best knowledge, none of existing
unpackers uses an effective approach to ensure that they can
retrieve all the hidden Dex data.

To force the packed app with DDM-4 and DOM-1/2 behaviors
to release all the hidden Dex data, Happer makes the ART run-
time load each method of the app and execute the static initial-
ization method of each class of the app. Happer accomplishes
this task through 3 steps. First, to collect the name of each
app class, Happer parses each class_def_item of the Dex
file retrieved when DexFile::<init> is invoked. Second, since
ClassLinker::FindClass will call ClassLinker::LoadMethod to
resolve the methods of an app class, Happer hooks FindClass.
More specifically, to make the ART runtime load all the app
methods, Happer feeds the name of each app class to FindClass.
Third, since ClassLinker::EnsureInitialized will execute the
static initialization method of an app class, Happer hooks this
method. More specifically, Happer passes the name of each
app class to EnsureInitialized, which makes the ART runtime
execute the static initialization method of each app class.

C. Reassembling Dex Data

To recover the Dex file of the packed app, Happer assembles
the collected Dex data through 2 steps.

First, Happer appends the collected Dex items to the end of
the Dex file that is dumped when DexFile::<init> is called by
the ART runtime. Meanwhile, Happer records the file offsets

of the appended Dex items. Such offset information will be
used by the next step to generate the valid Dex file.

Second, Happer leverages our customized baksmali [13]
and smali [30] to reassemble the collected Dex data into a
valid Dex file. More specifically, we feed the Dex file generated
in the first step and the file offsets of the appended Dex
items to baksmali. When baksmali transforms the Dex file’s
class_def_items, class_data_items, and encoded_methods
to their internal representations (e.g., DexBackedClassDef and
DexBackedMethod), the customized baksmali will refer to the
input file offsets to locate the corresponding Dex items, because
the appended Dex items contain the valid data for recovering
the Dex file. After baksmali decompiles the Dex file, Happer
uses smali [30] to conduct the recompilation and outputs the
generated Dex file as the recovered Dex file of the packed app.

VII. EVALUATION

We implement Happer with more than 7k lines of Java code
and 10k lines of Python code based on ds-5 [9]. Happer works
as an external debugger of Juno r2 development board and
supports both Android 6.0 and 8.1. We evaluate the performance
of Happer by answering the following 5 research questions.

• RQ1: Can Happer identify more packing behaviours of
popular commercial packers than other studies?
• RQ2: Can Happer recover the original Dex file of the app

packed by popular commercial packers?
• RQ3: Can Happer facilitate the off-the-shelf static analysis?
• RQ4: What is the additional overhead incurred by Happer?
• RQ5: Is it easy to specify packing behaviors by using BDL?

Data Set: We use three data sets to evaluate Happer. The
first set (FSet) contains 20 apps randomly selected from
F-Droid [18], each of which are packed by 12 commercial pack-
ers. In detail, we uploaded the apps to 5 public packing service
providers (i.e., Ali [4], Baidu [12], Ijiami [19], Qihoo [29], and
Tencent [32]) in Nov. 2016 and then downloaded the packed
apps. Note that Ali no longer provided the public packing
service whereas 3 new vendors (i.e., Bangcle [14], Kiwi [24],
and Testin [33]) are found to provide packing services in Nov.
2018. Therefore, we further uploaded the apps to these 7
packing services and then downloaded the packed samples. In
total, there are 240 packed apps in FSet. It is worth noting
that, although several packing service providers (e.g., Qihoo
and Bangcle) support applying obfuscations to the input APK,
we turn off these options to ease the cross-checking operation
performed in §VII-B. The second set (HSet) contains 24,031
legitimate/commercial Android apps collected by a global
smartphone manufacturer, and the last set (MSet) contains 1,787
malware samples provided by two leading security companies.

A. Identification of Packing Behaviors

We apply Happer to identifying packing behaviors of the
apps in FSet, and the results are summarized in the left portion
of Table IV. Meanwhile, in the right portion, we compare the
behaviors identified by Happer with the behaviors reported

9

by 6 unpacking tools. Moreover, we use Happer to detect the
packing behaviors of the apps in HSet.
(1) Commercial Packers: Here, we detail the behaviors of
Baidu, Qihoo, and Tencent packers because they were available
in both 2016 and 2018. More packing behaviors of Tencent,
Ali, Bangcle, Ijiami, Kiwi, and Testin packers are presented in
Appendix-G.
Baidu: Both Baidu-16 and Baidu-18 adopt ADG, DDL, and JNT
to pack the app, while the former also employs DDM and DDF
behaviors. ¬ To prevent the app from being analyzed by debug-
gers, both Baidu packers call Debug.isDebuggerConnected to
detect the presence of JDWP-compliant debuggers [22] (ADG-
1). Both packers dynamically load the hidden Dex file
(DDL-1). Precisely, Baidu-16 calls DexClassLoader.<init> and
Baidu-18 calls InMemoryDexClassLoader.<init> to achieve the
purpose. ® To protect the bytecode of critical methods, Baidu
packers reimplement the inherited onCreate method in each
activity component of the packed app (JNT-1). Besides these
common behaviors, Baidu-16 also modifies the protected Dex
file at runtime. ¯ Baidu-16 modifies the header section of the
released Dex file (DDM-1) after it has been resolved by the
ART runtime. Precisely, string_ids_off, method_ids_off,
and class_defs_off are filled with 0x0. ° Baidu-16 loads
the class_data_items of the released Dex file to dispersed
memory regions instead of contiguous memory space (DDF-1).
Qihoo: Both Qihoo packers have the similar behaviors. ¬ To
protect the apps from being dynamically analyzed, Qihoo-16
and Qihoo-18 adopt TCK-2 to calculate the execution time of
a specific native task, and the timeout threshold is set to one
second. These packers call DexFile.loadDex to dynamically
load the protected Dex files at runtime (DDL-2). ® Both Qihoo
packers reimplement the onCreate callback of each activity
component of the packed app using native code (JNT-1).
(2) Comparison: To evaluate the performance of Happer in
identifying packing behaviors, we compare Happer with 6
state-of-the-art studies, including DroidUnpack [45], TIRO [70],
PackerGrind [72], AppSpear [53], and DexHunter [86], in terms
of the observed packing behaviors. Since most of the unpackers
under evaluation are either close-source or only partially
open-source, we determine their capacities according to the
experiment results reported in their research papers.
Results: The comparison results are shown in the right portion
of Table IV. Note that the * suffix indicates that such the
behavior has been noticed by the corresponding study but its
details remain undisclosed. We can see that Happer totally
identifies 27 packing behaviors in 10 categories, whereas
other unpackers recognize only 7 packing behaviors and 6
categories at most. Specifically, compared with DroidUnpack,
which aims at disclosing packing behaviors, Happer exposes
7 more categories and 19 more different packing behaviors.
Moreover, among the identified 27 packing behaviors, the
details about 17 packing behaviors (including ADG-1/3/4/5/6,
AEU-1/2/3, TCK-2, SLH-1/3, DDL-1/3, DDM-2, DOM-2, and DDF-
1/2) are disclosed for the first time. One possible reason is that
previous studies mainly focus on unpacking apps rather than

identifying packing behaviors. Additionally, the packers are
evolving and their packing behaviors may also change.
(3) Packing Behaviors in Legitimate Android Apps: We
apply Happer to analyzing the legitimate apps in HSet and find
1, 710 packed samples, which can run on our platform and
have at least one packing behavior. Then we count the number
of apps that have the same packing behavior (Numb) and the
amount of samples that contain a common type of packing
behavior (Numt). Furthermore, we calculate the occurrence
frequency of a specific type of packing behavior (i.e., Ratiol
= Numt ÷ Numb) and the popularity of a particular packing
behavior (i.e., Ratiog = Numb ÷ #HSet, where #HSet refers
to the number of packed apps in HSet).
Results: The statistical results are shown in Table V. We notice
that DDL is the most commonly adopted packing behavior.
However, only a few packed apps adopt the sophisticated Dex
data protection strategies, e.g., DDM, DOM, and DDF. Moreover,
about a quarter of packed apps in HSet employ TCK, SLH, or
JNT to defeat unpackers. Additionally, a portion of packed
apps check their running environments to detect the presence
of debuggers, emulators, or DBI frameworks.
(4) Packing Behaviors in Malicious Android Apps: We apply
Happer to analyze the malware in MSet, of which 214 samples
are monitored with at least one packing behavior.
Results: The statistical results are shown in Table VI. We
discover that SLH, DDL, and ADG are the top three commonly
adopted packing behaviors. However, only a few packed mal-
ware adopt the sophisticated Dex data protection approaches,
e.g., DDF, DOM and DDM. Additionally, more than a quarter of
packed apps in MSet employ TCK and JNT to defeat unpackers.
Moreover, a portion of packed malicious apps will examine
their running environments to detect the presence of debuggers,
emulators, or DBI frameworks.

Answer to RQ1: Happer disclosed more packing behaviors
than the previous studies. Among the 27 observed behaviors,
the details about 17 of them are exposed for the first time.

B. Effectiveness of Unpacking

We apply Happer to unpacking the apps in FSet. Since we
have the original apps of these packed samples, we compare
each recovered Dex file with its corresponding original Dex file
to assess whether Happer can unpack the app correctly. More
specifically, we feed the recovered Dex file and the original
Dex file to JEB [23], a commercial decompiler, and manually
examine the decompilation results to identify the difference.
Results: Happer can completely recover the original Dex files
of the apps packed by 7 of the 12 commercial packers under
evaluation, including Ali-16, Bangcle-18, Ijiami-16/18, Tencent-
16/18, and Kiwi-18. However, existing unpackers can at most
completely recover the apps packed by 4 of the commercial
packers, including Ali-16, Bangcle-18, Tencent-16/18. For the
apps packed by Ijiami-16/18 or Kiwi-18, existing unpackers
fail to completely recover their Dex files because the existing
unpackers cannot retrieve all the hidden Dex data released

10

TABLE IV: An overview of behaviors of commercial Android packers. Refer to Table II for the description of these behaviors.

Packing
Behaviour

2016 2018 Other Unpackers1

Baidu Ijiami Qihoo Tencent Ali Baidu Ijiami Qihoo Tencent Bangcle Kiwi Testin DU-18 TR-18 AS-18 PG-17 AS-15 DH-15

ADG ADG-1 ADG-1/3-6 − ADG-2 − ADG-1 ADG-1/3-6 − − ADG-2 − − − − ADG-2 ADG-2 − ADG-2
AEU − AEU-1/2/3 − − − − AEU-1/2/3 − − − − − − − − − − −
ADI − ADI-1 − − − − ADI-1 − − − − − − − − ADI-1 − −
TCK − TCK-1 TCK-2 − − − TCK-1 TCK-2 − − − TCK-1 − − TCK-1 TCK-1 − −
SLH − SLH-1/3 − − − − SLH-1/3 − − SLH-1/2 − − SLH-2 − − − − −
DDL DDL-1 − DDL-2 DDL-2 DDL-2 DDL-1 − DDL-2 DDL-2 DDL-3 − DDL-3 DDL-* DDL-2 DDL-* DDL-* DDL-* DDL-*
DDM DDM-1 DDM-4 − DDM-1 DDM-2/3 − − − − − − − DDM-* DDM-3 DDM-* DDM-1/3 DDM-1/4 DDM-*
DOM − − − − − − DOM-1 − − − DOM-2 − − DOM-1 − − − −
DDF DDF-1 − − − − − DDF-2 − − − DDF-2 − − − DDF-* − DDF-* −
JNT JNT-1 − JNT-1 − − JNT-1 − JNT-1 − − − JNT-1 − JNT-1 JNT-1 JNT-1 − −

#Total
Behaviors

27 different packing behaviors are monitored by Happer. 3 4 6 7 4 3

1 DU-18 (DroidUnpack [45]), TR-18 (TIRO [70]), AS-18 (AppSpear [53]), PG-17 (PackerGrind [72]), AS-15 (AppSpear [79]), DH-15 (DexHunter [86]).

TABLE V: Packing behaviors found in legitimate packed apps.

Behavior Type Ratiol Ratiog Behavior Type Ratiol Ratiog

ADG

1 104/289 (36.0%)

289/1710
(16.9%)

SLH

1 280/389 (72.0%)
389/1710
(22.7%)

2 185/289 (64.0%) 2 300/389 (77.1%)
3 91/289 (31.5%) 3 280/389 (72.0%)
4 90/289 (31.1%)

DDL

1 99/1614 (6.1%)
1614/1710

(94.4%)
5 90/289 (31.1%) 2 1283/1614 (79.5%)
6 90/289 (31.1%) 3 234/1614 (14.5%)

AEU

1 81/81 (100.0%)
81/1710
(4.7%)

DDF

1 0/35 (0.0%)
35/1710
(2.0%)

2 81/81 (100.0%) 2 35/35 (100.0%)
3 81/81 (100.0%) N/A N/A

ADI 1 87/87 (100.0%)
87/1710
(5.1%)

JNT 1 440/440 (100.0%)
440/1710
(25.7%)

TCK
1 83/485 (17.1%) 485/1710

(28.4%)
DDM

1 2/47(4.2%)
47/1710
(2.7%)

2 402/485 (82.9%) 2 0/47(0.0%)

DOM
1 35/35 (100.0%) 35/1710

(2.0%)
3 0/47(0.0%)

2 0/35 (0.0%) 4 45/47(95.8%)

TABLE VI: Packing behaviors found in malicious packed apps.

Behavior Type Ratiol Ratiog Behavior Type Ratiol Ratiog

ADG

1 64/109 (58.7%)

109/214
(50.9%)

SLH

1 135/165 (81.8%)
165/214
(77.1%)

2 45/109 (41.3%) 2 45/165 (27.3%)
3 49/109 (45.0%) 3 129/165 (78.2%)
4 48/109 (44.0%)

DDL

1 80/157 (51.0%)
157/214
(73.4%)

5 48/109 (44.0%) 2 32/157 (20.4%)
6 48/109 (44.0%) 3 45/157 (28.7%)

AEU

1 49/49 (100.0%)
49/214
(22.9%)

DDF

1 11/52 (21.2%)
52/214
(24.3%)

2 49/49 (100.0%) 2 41/52 (78.8%)
3 49/49 (100.0%) N/A N/A

ADI 1 49/49 (100.0%)
49/214
(22.9%)

JNT 1 83/83 (100.0%)
83/214
(38.8%)

TCK
1 49/61 (80.3%) 61/214

(28.5%)
DDM

1 0/13(0.0%)
13/214
(6.1%)

2 12/61 (19.7%) 2 5/13(38.5%)

DOM
1 41/41 (100.0%) 41/214

(19.2%)
3 5/13(38.5%)

2 0/41 (0.0%) 4 8/13(61.5%)

at runtime. Additionally, since Baidu-16/18, Qihoo-16/18, and
Testin-18 reimplement specific app methods using native code,
the Happer-recovered Dex files of the apps packed by these 5
packers lack the bytecode of those reimplemented app methods
because their bytecode will never be released to the memory.
Note that none of existing unpackers can tackle this issue.

We also run Happer and DroidUnpack [45] to unpack the
1,924 packed apps from HSet and MSet, including 1,710
legitimate and 214 packed malware samples, respectively. From
the results, we find that Happer successfully unpacks all these
samples and outputs valid Dex files containing the hidden Dex
data. To verify the validations of the produced Dex files, we
diassemble them using the off-the-shelf Dex file disassembling

TABLE VII: The Analysis on Malware Samples.

Packers Ali Baidu Bangcle Ijiami Kiwi Qihoo

#App 5 80 45 49 7 28
PSavg 0.0 0.0 0.5 0.7 5.9 0.6
RSavg 11.6 10.9 4.3 7.4 8.6 14.6
∆Savg +11.6 +10.9 +3.8 +6.7 +2.7 +14.0

tools, including Baksmali, DexDump, Jadx, and IDA Pro, which
adopt different strategies to check the Dex file, and all these
Dex files are disassembled normally. Meanwhile, DroidUnpack
dumps Dex files from 822 and 92 samples of HSet and MSet
respectively. After verification, 17 packed legitimate apps and
16 packed malware are successfully unpacked. However, the
dumped Dex files for other samples are the shell Dex files
inserted by the packers or other class files (i.e., webview). By
studying its source code, we find that the failures are mainly
caused by the following reasons. First, it mainly focuses on
studying the packing techniques from 2010 to 2015, thereby
cannot handle the recent packers. Second, it looks up the Dex
data from their corresponding Android runtime representations
(e.g., the ArtMethod instances), but the advanced packers
(e.g., Ijiami and Kiwi) dynamically modify them to hinder
unpacking. Third, it does a lot of time-consuming work at
runtime (e.g., memory instrumentation and query operations),
which can result in app timeouts and crashes.

Answer to RQ2: Happer outperforms existing unpackers in
terms of unpacking the apps because it can retrieve all the
hidden Dex data released to the memory.

C. Assistance to Static Analysis

We first use Happer to unpack the 214 packed malware in
MSet and output the recovered Dex files. Since the majority
of static analysis tools [39, 40, 57, 66, 71, 80–83, 85] detect
malware by finding invocations of sensitive framework APIs,
we use FlowDroid [39] to find sensitive APIs presented in the
recovered Dex files and the corresponding packed ones.
Results: Table VII shows the analysis results, where #App
indicates the number of packed malware. PSavg and RSavg

denote the average number of sensitive APIs found in the
packed Dex files and the recovered Dex files, respectively.
∆Savg represents the increased number of sensitive APIs found
in the recovered Dex files (i.e., ∆Savg = RSavg - PSavg).

11

Fig. 6: The performance of Happer.

The results show that more sensitive APIs are exposed in
the recovered Dex files. For example, there are almost no
sensitive APIs in malware packed by Ali, Baidu, Bangcle, Ijiami,
and Qihoo, whereas many sensitive APIs are found in the
corresponding recovered Dex files.

Answer to RQ3: Happer can assist the off-the-shelf static
analysis to expose more stealthy behaviors of the packed
apps by providing the recovered Dex files.

D. Overhead

The extra overhead introduced by Happer may come from 4
aspects, including the instruction tracing, the HBRK suspension,
the register accessing, and the memory data dumping. To
evaluate the slowdown incurred by these operations, we instruct
Happer to perform only an individual operation in one test.
For each operation, we run CF-Benchmark [15] 30 times and
calculate the average performance score. The score computed
when we disable all the functions of Happer is treated as the
baseline (i.e., the BASE bar in Fig.6). Note that a higher score
denotes a better performance.
Results: When we enable the tracing function, the performance
score is indicated by the TRACE bar and almost no slowdown
is incurred. The slowdown incurred by HBRKs is indicated
by the HBRK bar, and around 10% additional slowdown
is incurred. Moreover, to asses the slowdown incurred by
accessing the register and dumping the memory content, we
instruct Happer to get the values of registers and retrieve the
app library libCFBench.so that has been loaded to the memory
by CF-Benchmark. The scores of these operations are denoted
by the bars, HBRK+REG and HBRK+MEM, respectively.

In addition, we compare the performance of Happer with
Qemu, which is used by the emulator-based dynamic analysis,
and its performance score is denoted by the EMU bar. During
measurement, Qemu runs Android 6.0 as the guest system, and
the host is equipped with Intel i7-6700k CPU and 32GB RAM.
According to the results, the emulator achieves only about
half of the BASE score, indicating that the emulator-based
approaches will incur more slowdown than Happer.

Answer to RQ4: By leveraging ARM’s hardware features,
Happer incurs reasonable slowdown to the tracked app.

E. Efforts for Composing Behavior Specification

To evaluate the efforts of writing the behavior specification

by using BDL, we invite five fresh graduate students majored in
computer science to write the specifications for four commonly
adopted packing behaviors in four categories, including ADG-2,
AEU-1, SLH-2, and DDL-2.

In detail, to let the participants know how to write the
specification using BDL, we provide them an introduction to
the grammar of BDL and an example specification for SLH-
1. On average, they took around 3.5 minutes to preliminary
understand BDL. In addition, we explain the technical details
about the selected packing behaviors to the participants and
calculate the time spent by the participants to write each
specification. On average, they can accurately write the behavior
specification for ADG-2, AEU-1, SLH-2, and DDL-2 in around
3.9, 5.6, 1.8, and 3.4 minutes, respectively. More time is needed
for writing the behavior specification for AEU-1 because it is
the most complicated one among the four selected packing
behaviors. Note that, each of these specifications consists of
no more than 10 BDL statements. Moreover, we provide the
participants the necessary source code of Happer and ask them
to extend the tool in order to make it support the identification
of AEU-1 by directly customizing the source code. Within an
hour, only two participants have submitted their attempts but
none of them can achieve the purpose.

Answer to RQ5: BDL can assist analysts in their unpacking
tasks by significantly simplifying the extension of Happer
to support the monitoring of new packing behaviors.

VIII. DISCUSSION

As we just use Happer to analyze the benign packed apps for
research purpose, we discuss its limitations from the following
three aspects.
Transparency: We introduce the potential fingerprints that
might be exploited to detect Happer and our countermeasures.
The first potential fingerprint is the ETM registers used by
Happer, which can be monitored in kernel layer (F1). Since
the kernel module loadable option is disabled when building
the guest system and we assume that the apps are unable
to gain the root privilege, the packers cannot detect Happer
by using F1. The second type of potential fingerprint is the
slowdown incurred by the HBRK suspension during dynamic
instrumentation (F2). To prevent packed apps from detecting
Happer through F2, we design a specific mechanism to detect
the slowdown checking behavior performed by the packed
app and bypass it by returning modified timestamps to the app
when such a behavior is found. Thus, it is hard for packed apps
to discover Happer by using F2. The third type of potential
fingerprint is the special system properties that are different
from those in the official Android images (F3). To remove
such fingerprints, we let the system have the same properties
as those in the official system for commercial smartphones
(e.g., Pixel) when building the guest system for Juno. Hence,
packed apps cannot know that they are running on a hardware
platform for analysis by checking system properties (i.e., F3).

12

Detection of Novel Packers: Happer supports all the packing
behaviors of the evaluated apps, which are much more than the
behaviors reported by previous studies and unpackers. When
encountering new packers, Happer can get the memory regions
used by the app and then retrieve the virtual addresses of the
executed code to detect the instinct packing behavior “write-
then-execute”, which is also exploited by DroidUnpack [45],
to identify the new packing behaviors according to the its
dynamically tracked information. However, for other packing
behaviors, manual effort may be required to determine them.
The dynamically tracked information, including instructions,
memory data, method invocations, and dumped Dex files, can
assist in such a determination procedure. Then, Happer can
be extended to support the new packing behaviors using BDL
timely. Note that such manual effort is just required once for all
apps packed by the same packer. In the future, we will further
improve Happer by designing reinforcement learning based
algorithms to automatically learn the new packing behaviors.
Scalability: Since the ARM platform only has six HBRKs [11],
at most six packing behaviors, whose detection requires HBRK,
can be identified by Happer at a time. Hence, to identify all
an app’s packing behaviors, Happer needs to run the app
multiple times. In future work, we will design an algorithm to
efficiently allocate HBRK in order to increase the number of
packing behaviors that can be identified by Happer at a time.

IX. RELATED WORK

In this section, we present the most related work on native
(un)packers, Android unpackers, and dynamic app analysis.
PC (Un)packers: There are already a number of studies related
to packing or unpacking but most of them focus on native/PC
programs [41, 48, 49, 60, 63, 68], and none of them exploited
hardware features like PT for x86 or ETM for ARM to unpack
programs. For example, PolyUnpack [62] monitors the program
inside a debugger and then determines the packed code by
comparing the dynamically traced instruction sequence with
the static disassembly of the program. Omniunpack [54] tracks
the memory modifications at page level to determine the
hidden code of packed binaries. Renovo [49] and the unpacker
presented in [68] leverage the whole-system emulation tech-
niques (i.e., TEMU) to unpack the packed binaries. Saffron [60]
conducts dynamic unpacking tasks leveraging Intel’s PIN.

However, these unpacking techniques and tools cannot be
applied to unpacking Android apps directly due to the different
execution mechanisms of the unpacking targets, namely native
instructions and Dex files. More precisely, the PC unpackers
only concerned with the native instructions executed by CPU,
but Android unpackers need to consider the Dex items and
Dalvik bytecode executed by Android runtime [45, 70].
Android Unpackers: With the growing adoption of packing
techniques to evade analysis and detection, several Android
app unpackers have been proposed [45, 56, 70, 72, 76, 79,
86]. However, most of them unpack the app according to the
developer’s experience on packers [79, 86], and thus they are
ineffective in unpacking evolved packers. Meanwhile, although
some unpackers will analyze packing behaviors [45, 70, 72],

they rely on DBI, VMI, or the system modification, which
can be detected and impeded by packers with anti-analysis
abilities [59, 61, 66]. Moreover, existing unpackers usually
incur much overhead because they need to emulate the entire
Android system, instrument or track each executed instruction
(or bytecode) [45, 56, 72, 76].
Hardware-assisted Dynamic Trace: Various hardware-assisted
approaches [42, 43, 65, 84] have been proposed for program
debugging and tracing on x86 platform by leveraging the
hardware features, including hardware virtualization, hardware
sensors, and PMU (Performance Monitoring Unit). Recently, a
few hardware-assisted analysis methods have been proposed
for ARM platform. For instance, Ninja [55] is a transparent
malware analysis framework, and it implements the tracing and
debugging functionalities via the hardware-assisted isolation
execution environment TrustZone and the hardware features
PMU and ETM. In addition, HART [44] is a kernel module
tracing framework implemented based on ETM. However, both
the implementation mechanisms and purposes of Happer are
different from them.

Specifically, Ninja focuses on tracing and debugging ARM
processes and HART is a kernel-specific tracing framework,
whereas Happer focuses on analyzing and unpacking Android
apps. Additionally, Ninja and HART work as the on-device
tracing and debugging tools, but Happer consists of an online
tracing component for collecting runtime information and an
offline component for determining behaviors and assembling
unpacking results. Moreover, Happer has a novel resolver for
parsing the ETM stream, and it supports customized extensions
using the provided behavior description language (i.e., BDL).
Consequently, Happer is a novel hardware-assisted unpacking
and analyzing approach proposed in this paper.

X. CONCLUSION

We propose a novel hardware-assisted unpacking tool Happer
to deal with the ever-evolving Android packers. It leverages
hardware features to monitor the packing behaviors and then
selects the proper strategies to unpack the packed apps. The
comprehensive evaluation shows that Happer observed much
more packing behaviors than existing studies and effectively
recovered the Dex files of the packed apps.

ACKNOWLEDGMENT

We sincerely thank Prof. Heng Yin for shepherding our paper
and the anonymous reviewers for their constructive comments.
We thank Luyi Yan for his assistance during paper revision.
This work is partly supported by Hong Kong RGC Projects (No.
152223/17E, 152239/18E, CityU C1008-16G), NSFC Young
Scientists Fund (No. 62002306), NSFC General Fund (No.
61872438, 61772371, 62002151, 61972332), HKPolyU Start-
up Fund (ZVU7), Research Grant from Huawei Technologies,
CCF-Tencent Open Research Fund, the Fundamental Research
Funds for the Central Universities (No. K20200019), Leading
Innovative and Entrepreneur Team Introduction Program of
Zhejiang (No. 2018R01005), and Zhejiang Key R&D (No.
2019C03133).

13

REFERENCES

[1] “Android emulator detection,” https://blog.trustlook.com/
bangle-android-app-packer-unpacking/, 2018.

[2] “Bangle android app packer: Unpacking
& analysis,” https://blog.trustlook.com/
bangle-android-app-packer-unpacking/, 2018.

[3] “drizzleDumper,” https://github.com/DrizzleRisk/
drizzleDumper, 2018.

[4] “Ali packer,” https://security.alibaba.com, 2019.
[5] “Android arm inline hook,” https://github.com/ele7enxxh/

Android-Inline-Hook, 2019.
[6] “Android malware is becoming more resilient,”

https://www.symantec.com/connect/blogs/
five-ways-android-malware-becoming-more-resilient,
2019.

[7] “android-unpacker,” https://github.com/strazzere/
android-unpacker, 2019.

[8] “android_unpacker,” https://github.com/CheckPointSW/
android_unpacker, 2019.

[9] “Arm ds-5,” https://developer.arm.com/tools-and-software/
embedded/legacy-tools/ds-5-development-studio, 2019.

[10] “Arm ptm decoder, and arm etmv4 decoder,” https://github.
com/hwangcc23/ptm2human, 2019.

[11] “Armv8-a architecture reference manual,”
https://static.docs.arm.com/ddi0487/db/DDI0487D_
b_armv8_arm.pdf, 2019.

[12] “Baidu packer,” http://app.baidu.com/, 2019.
[13] “baksmali,” https://github.com/JesusFreke/smali, 2019.
[14] “Bangcle packer,” https://www.bangcle.com/, 2019.
[15] “Cf-bench,” http://bench.chainfire.eu/, 2019.
[16] “Dex2jar,” https://github.com/pxb1988/dex2jar, 2019.
[17] “Embedded trace macrocell specification,”

https://static.docs.arm.com/ihi0064/d/IHI0064D_etm_
v4_architecture_spec.pdf, 2019.

[18] “F-droid,” https://f-droid.org/, 2019.
[19] “ijiami packer,” http://www.ijiami.cn/, 2019.
[20] “Implementing art just-in-time (jit) compiler,” https:

//source.android.com/devices/tech/dalvik/jit-compiler,
2019.

[21] “Jadx,” https://github.com/skylot/jadx, 2019.
[22] “Jdwp debugger,” https://stuff.mit.edu/afs/sipb/project/

android/docs/tools/debugging/index.html, 2019.
[23] “Jeb decompiler for android,” https://www.pnfsoftware.

com/jeb/android, 2019.
[24] “kiwisec packer,” https://cloud.kiwisec.com, 2019.
[25] “oatdump,” https://android.googlesource.com/platform/art/

+/kitkat-dev/oatdump/oatdump.cc, 2019.
[26] “objdump,” https://developer.android.com/ndk, 2019.
[27] “A plt hook library for android native elf,” https://github.

com/iqiyi/xHook, 2019.
[28] “Qemu, an open source processor emulator,” https://www.

qemu.org/, 2019.
[29] “Qihoo packer,” http://dev.360.cn/, 2019.
[30] “smali,” https://github.com/JesusFreke/smali, 2019.
[31] “System and kernel security for android,” https://source.

android.com/security/overview/kernel-security, 2019.
[32] “Tencent packer,” https://intl.cloud.tencent.com/, 2019.
[33] “Testin packer,” https://www.testin.cn/, 2019.
[34] “A tool for reverse engineering android apk files,” https:

//ibotpeaches.github.io/Apktool/, 2019.
[35] “A tool for translating dalvik bytecode to equivalent java

bytecode,” https://github.com/Storyyeller/enjarify, 2019.
[36] “Zjdroid,” https://github.com/halfkiss/ZjDroid, 2019.
[37] “ANTLR,” https://github.com/antlr/antlr4, 2020.
[38] “Principles of ARM Memory,” http://infocenter.arm.

com/help/topic/com.arm.doc.den0001c/DEN0001C_
principles_of_arm_memory_maps.pdf, 2020.

[39] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel,
“Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps,” ACM
Sigplan Notices, vol. 49, no. 6, pp. 259–269, 2014.

[40] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt,
S. Rasthofer, and E. Bodden, “Mining apps for abnormal
usage of sensitive data,” in Proc. ACM/IEEE ICSE, 2015.

[41] G. Bonfante, J. Fernandez, J.-Y. Marion, B. Rouxel,
F. Sabatier, and A. Thierry, “CoDisasm: Medium scale
concatic disassembly of self-modifying binaries with
overlapping instructions,” in Proc. ACM CCS, 2015.

[42] Z. Deng, X. Zhang, and D. Xu, “Spider: Stealthy binary
program instrumentation and debugging via hardware
virtualization,” in ACSAC, 2013.

[43] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether:
malware analysis via hardware virtualization extensions,”
in Proc. ACM CCS, 2008.

[44] Y. Du, Z. Ning, J. Xu, Z. Wang, Y.-H. Lin, F. Zhang,
X. Xing, and B. Mao, “Hart: Hardware-assisted kernel
module tracing on arm,” in Proc. ESORICS, 2020.

[45] Y. Duan, M. Zhang, A. V. Bhaskar, H. Yin, X. Pan, T. Li,
X. Wang, and X. Wang, “Things you may not know
about android (un)packers: a systematic study based on
whole-system emulation,” in Proc. NDSS, 2018.

[46] C. Emanuele, G. Mariano, F. Yanick, and B. Davide,
“Understanding linux malware,” in Proc. IEEE S&P, 2018.

[47] T. Garfinkel and M. Rosenblum, “A virtual machine
introspection based architecture for intrusion detection.”
in Proc. NDSS, 2003.

[48] F. Guo, P. Ferrie, and T.-C. Chiueh, “A study of the packer
problem and its solutions,” in Proc. RAID, 2008.

[49] M. G. Kang, P. Poosankam, and H. Yin, “Renovo: A
hidden code extractor for packed executables,” in Proc.
ACM WORM, 2007.

[50] I. Kirillov, D. Beck, P. Chase, and R. Martin, “Malware
attribute enumeration and characterization,” The MITRE
Corporation [online, accessed Apr. 8, 2019], 2011.

[51] P. Klint, T. Van Der Storm, and J. Vinju, “Rascal: A
domain specific language for source code analysis and
manipulation,” in Proc. IEEE SCAM, 2009.

[52] A. Kurmus and R. Zippel, “A tale of two kernels: Towards
ending kernel hardening wars with split kernel,” in Proc.
CCS, 2014.

14

https://blog.trustlook.com/bangle-android-app-packer-unpacking/
https://blog.trustlook.com/bangle-android-app-packer-unpacking/
https://blog.trustlook.com/bangle-android-app-packer-unpacking/
https://blog.trustlook.com/bangle-android-app-packer-unpacking/
https://github.com/DrizzleRisk/drizzleDumper
https://github.com/DrizzleRisk/drizzleDumper
https://security.alibaba.com
https://github.com/ele7enxxh/Android-Inline-Hook
https://github.com/ele7enxxh/Android-Inline-Hook
https://www.symantec.com/connect/blogs/five-ways-android-malware-becoming-more-resilient
https://www.symantec.com/connect/blogs/five-ways-android-malware-becoming-more-resilient
https://github.com/strazzere/android-unpacker
https://github.com/strazzere/android-unpacker
https://github.com/CheckPointSW/android_unpacker
https://github.com/CheckPointSW/android_unpacker
https://developer.arm.com/tools-and-software/embedded/legacy-tools/ds-5-development-studio
https://developer.arm.com/tools-and-software/embedded/legacy-tools/ds-5-development-studio
https://github.com/hwangcc23/ptm2human
https://github.com/hwangcc23/ptm2human
https://static.docs.arm.com/ddi0487/db/DDI0487D_b_armv8_arm.pdf
https://static.docs.arm.com/ddi0487/db/DDI0487D_b_armv8_arm.pdf
http://app.baidu.com/
https://github.com/JesusFreke/smali
https://www.bangcle.com/
http://bench.chainfire.eu/
https://github.com/pxb1988/dex2jar
https://static.docs.arm.com/ihi0064/d/IHI0064D_etm_v4_architecture_spec.pdf
https://static.docs.arm.com/ihi0064/d/IHI0064D_etm_v4_architecture_spec.pdf
https://f-droid.org/
http://www.ijiami.cn/
https://source.android.com/devices/tech/dalvik/jit-compiler
https://source.android.com/devices/tech/dalvik/jit-compiler
https://github.com/skylot/jadx
https://stuff.mit.edu/afs/sipb/project/android/docs/tools/debugging/index.html
https://stuff.mit.edu/afs/sipb/project/android/docs/tools/debugging/index.html
https://www.pnfsoftware.com/jeb/android
https://www.pnfsoftware.com/jeb/android
https://cloud.kiwisec.com
https://android.googlesource.com/platform/art/+/kitkat-dev/oatdump/oatdump.cc
https://android.googlesource.com/platform/art/+/kitkat-dev/oatdump/oatdump.cc
https://developer.android.com/ndk
https://github.com/iqiyi/xHook
https://github.com/iqiyi/xHook
https://www.qemu.org/
https://www.qemu.org/
http://dev.360.cn/
https://github.com/JesusFreke/smali
https://source.android.com/security/overview/kernel-security
https://source.android.com/security/overview/kernel-security
https://intl.cloud.tencent.com/
https://www.testin.cn/
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://github.com/Storyyeller/enjarify
https://github.com/halfkiss/ZjDroid
https://github.com/antlr/antlr4
http://infocenter.arm.com/help/topic/com.arm.doc.den0001c/DEN0001C_principles_of_arm_memory_maps.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0001c/DEN0001C_principles_of_arm_memory_maps.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0001c/DEN0001C_principles_of_arm_memory_maps.pdf

[53] B. Li, Y. Zhang, J. Li, W. Yang, and D. Gu, “AppSpear:
Automating the hidden-code extraction and reassembling
of packed android malware,” Journal of Systems and
Software (JSS), vol. 140, pp. 3–16, 2018.

[54] L. Martignoni, M. Christodorescu, and S. Jha, “Omniun-
pack: Fast, generic, and safe unpacking of malware,” in
Proc. ACSAC, 2007.

[55] Z. Ning and F. Zhang, “Ninja: Towards transparent tracing
and debugging on ARM,” in Proc. USENIX Security,
2017.

[56] ——, “DexLego: Reassembleable Bytecode Extraction
for Aiding Static Analysis,” in Proc. DSN, 2018.

[57] C. Qian, X. Luo, L. Yu, and G. Gu, “Vulhunter: Towards
discovering vulnerabilities in android applications,” IEEE
Micro, vol. 35, no. 1, 2015.

[58] C. Qian, X. Luo, Y. Shao, and A. T. Chan, “On tracking
information flows through jni in android applications,” in
Proc. DSN, 2014.

[59] J. Qiu, B. Yadegari, B. Johannesmeyer, S. Debray, and
X. Su, “A framework for understanding dynamic anti-
analysis defenses,” in Proc. ACM PPREW, 2014.

[60] D. Quist and V. Smith, “Covert debugging: Circumventing
software armoring,” in Proc. BlackHat, 2007.

[61] S. Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden,
“Harvesting runtime values in android applications that
feature anti-analysis techniques.” in NDSS, 2016.

[62] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee,
“PolyUnpack: Automating the hidden-code extraction of
unpack-executing malware,” in Proc. ACSAC, 2006.

[63] S. Schrittwieser, S. Katzenbeisser, J. Kinder, G. Merz-
dovnik, and E. Weippl, “Protecting software through
obfuscation: Can it keep pace with progress in code
analysis?” ACM Computing Surveys, 2016.

[64] Y. Shao, X. Luo, and C. Qian, “Rootguard: Protecting
rooted android phones,” Computer, vol. 47, no. 6, 2014.

[65] C. Spensky, H. Hu, and K. Leach, “Lo-phi: Low-
observable physical host instrumentation for malware
analysis.” in Proc. NDSS, 2016.

[66] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and
L. Cavallaro, “The evolution of android malware and
android analysis techniques,” ACM Computing Surveys
(CSUR), vol. 49, no. 4, 2017.

[67] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “Cop-
perdroid: Automatic reconstruction of android malware
behaviors.” in Proc. NDSS, 2015.

[68] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G.
Bringas, “SoK: Deep packer inspection: A longitudinal
study of the complexity of run-time packers,” in Proc.
IEEE S&P, 2015.

[69] T. Vidas and N. Christin, “Evading android runtime
analysis via sandbox detection,” in Proc. ASIACCS, 2014.

[70] M. Y. Wong and D. Lie, “Tackling runtime-based obfus-
cation in Android with TIRO,” in Proc. USENIX Security,
2018.

[71] M. Xu, C. Song, Y. Ji, M.-W. Shih, K. Lu, C. Zheng,
R. Duan, Y. Jang, B. Lee, C. Qian, S. Lee, and T. Kim,

“Toward engineering a secure android ecosystem: A survey
of existing techniques,” ACM Computing Surveys, 2016.

[72] L. Xue, X. Luo, L. Yu, S. Wang, and D. Wu, “Adaptive
unpacking of Android apps,” in Proc. ICSE, 2017.

[73] L. Xue, X. Ma, X. Luo, L. Yu, S. Wang, and T. Chen,
“Is what you measure what you expect? factors affecting
smartphone-based mobile network measurement,” in Proc.
IEEE INFOCOM, 2017.

[74] L. Xue, C. Qian, and X. Luo, “Androidperf: A cross-
layer profiling system for android applications,” in Proc.
IWQoS, 2015.

[75] L. Xue, C. Qian, H. Zhou, X. Luo, Y. Zhou, Y. Shao, and
A. T. Chan, “Ndroid: Toward tracking information flows
across multiple android contexts,” IEEE Transactions on
Information Forensics and Security, vol. 14, no. 3, 2019.

[76] L. Xue, H. Zhou, X. Luo, L. Yu, D. Wu, Y. Zhou, and
X. Ma, “Packergrind: An adaptive unpacking system for
android apps,” IEEE Trans. on Software Engineering,
2020.

[77] L. Xue, Y. Zhou, T. Chen, X. Luo, and G. Gu, “Malton:
Towards on-device non-invasive mobile malware analysis
for art,” in Proc. USENIX Security, 2017.

[78] L.-K. Yan and H. Yin, “Droidscope: Seamlessly recon-
structing os and dalvik semantic views for dynamic
android malware analysis,” in Proc. USENIX Security,
2012.

[79] W. Yang, Y. Zhang, J. Li, J. Shu, B. Li, W. Hu, and D. Gu,
“AppSpear: Bytecode Decrypting and DEX Reassembling
for Packed Android Malware,” in Proc. RAID, 2015.

[80] L. Yu, X. Luo, J. Chen, H. Zhou, T. Zhang, H. Chang,
and H. Leung, “Ppchecker: Towards accessing the trust-
worthiness of android apps’ privacy policies,” IEEE Trans.
on Software Engineering, 2019.

[81] L. Yu, X. Luo, X. Liu, and T. Zhang, “Can we trust the
privacy policies of android apps?” in Proc. DSN, 2016.

[82] L. Yu, X. Luo, C. Qian, S. Wang, and H. Leung,
“Enhancing the description-to-behavior fidelity in android
apps with privacy policy,” IEEE Trans. on Software
Engineering, 2018.

[83] L. Yu, T. Zhang, X. Luo, L. Xue, and H. Chang, “Towards
automatically generating privacy policy for android apps,”
IEEE Trans. on Information Forensics and Security, 2017.

[84] F. Zhang, K. Leach, A. Stavrou, H. Wang, and K. Sun,
“Using hardware features for increased debugging trans-
parency,” in Proc. IEEE S&P, 2015.

[85] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-
aware android malware classification using weighted
contextual api dependency graphs,” in Proc. CCS, 2014.

[86] Y. Zhang, X. Luo, and H. Yin, “DexHunter: toward
extracting hidden code from packed Android applications,”
in Proc. ESORICS, 2015.

APPENDIX

A. The Used ETM and MMU Registers

Table VIII summarizes the ETM registers used for enabling

15

TABLE VIII: The leveraged ARM ETM trace registers.

ETM Registers Field Purpose
TRCCONFIGR

(Trace Configuration Register)
CID Enable context ID tracing
BB Enable broadcast tracking

TRCCIDCCTLR0
(Context ID Comparator Control Register 0)

COMP0
Perform Context ID comparison

with relevant byte in TRCCIDCVR0

TRCCIDCVR0
(Context ID Comparator Value Register 0)

VALUE
Specify the PID to be compared
with during Context ID tracing

TRCIDR0
(ID Register 0)

TRCBB
Check if branch

broadcast tracing is supported

TRCBBCTLR
(Branch Broadcast Control Register)

RANGE
Specify address range comparator
pair for branch broadcast tracing

TRCACVR0/TRCACVR1
(Address Comparator Value Registers 0/1)

ADDRESS
Specify the virtual memory range

for branch broadcast tracing

TABLE IX: The leveraged ARM MMU registers/descriptor.

Register/Descriptor Field Purpose
PAR_EL1

(Physical Address Register (EL1))
F Check if address translation succeeds
PA Obtain the base physical address PAbase

TTBR0_EL1
(Translation table base register(EL1))

BADDR Obtain the translation table base address

Page descriptor UXN Check unprivileged execute permission
AP Check access permission

and configuring the tracing functionality, and Table IX lists
the MMU registers used for fetching the memory data.

B. Calculating Physical Memory Address
There are a series of address translation (AT) instructions for

translating a virtual address to its corresponding physical ad-
dress in the format of “AT <at_op>, <Xt>”, where at_op and
Xt represent the translation operation and the virtual address,
respectively. For instance, “AT S12E0R <Xt>” performs the
stage 1 and stage 2 address translation (i.e., the virtual address
is first converted to an intermediate physical address and then
translated to the physical address) for the virtual address in
EL0, and the corresponding physical address is stored in the
physical address register, PAR_EL1 [11].

Accordingly, Happer leverages AT instructions to obtain the
physical address of the demanded in-memory data according
to its virtual address. Before getting the physical address from
PAR_EL1, Happer checks whether the address translation has
been successfully conducted according to the F field of PAR_EL1.
If so (i.e., the value of the F field equals 0x0), Happer retrieves
the calculated physical address from the PA field of PAR_EL1.
Note that the physical address PA′ read from the PAR_EL1
register is page-aligned, and thus Happer further converts it
to the actual physical address PA of the target data through
Equation 1, where V A and PS refer to the virtual address of
the memory data and the size of the memory page, respectively.

PA = PA′ + (V A mod PS) (1)

C. Inserted Memory Loading Instructions
We show the instructions for loading the data in Fig.7, where

memory_force_loading takes in the virtual address and the size
of the demanded data. Specifically, we use the LDR instruction
to access each virtual memory slice of the data. By doing so,
the OS completely loads the target data to physical memory.

 1 procedure memory_force_loading(addr, size) {
 2 ; The register r0 stores the virtual memory address of the file to be loaded.
 3 ; The register r1 stores the size of the entire file.
 4 push {r0, r1, r2, r3} ; Store the registers r0-r3
 5 mov r2, r1 / PAGE_SIZE + 0x1 ; Calculate time for loading the whole file
 6 mov r3, #0x0 ; Store the loop index into register r3
 7 ldr r1, [r0] < ; Force loading the data addressed by r0
 8 add r0, PAGE_SIZE | ; Adjust to the next memory access point
 9 add r3, 0x1 | ; Increase the loop count.
10 cmp r3, r2 | ; Judge whether the task has been finished
11 bne {pc} - #0xc > ; To load next memory page
12 pop {r0, r1, r2, r3} ; Restore the registers r0-r3.
13 }

Fig. 7: The instrumentation code for loading the data.

D. Constructing Address-Function Map

Happer retrieves the memory-map information of loaded
system files (i.e., system libraries and framework Oat files) from
the /proc/#pid/maps file. In this process, we find the executable
memory region (i.e., V Aexec) for each loaded system library
and framework Oat file. Then, we use objdump [26] and
oatdump [25] to disassemble the system libraries and the
framework Oat files. Meanwhile, we record the file offset
(i.e., FOinst) of each decompiled instruction.

However, the virtual address (i.e., V Ainst) of an instruction
does not always equal to the result of adding FOinst to V Aexec

because the file offset (i.e., FOinst) and the virtual offset
(i.e., V Oinst) for an instruction are commonly inconsistent.
To address this issue, we calculate the difference (i.e., δgap)
between the 2 types of offsets through Equation 2. Precisely,
for instructions in the system library, Happer uses objdump to
retrieve the virtual memory offset (i.e., V Otext) and the file
offset (i.e., FOtext) of the library’s .text section. Meanwhile,
for instructions in the framework Oat file, Happer uses oatdump
to obtain the file offset of the Oat file’s .oatexec section (i.e.,
FOexec). Afterwards, V Ainst is calculated using Equation 3.
Subsequently, we store the calculated virtual instruction address
(i.e., V Ainst) and its corresponding system method (i.e.,
method) into the structure map{V Ainst 7→method}, which
will be used to facilitate the identification of the system methods
invoked by the packed app.

δgap =

{
FOtext − V Otext (System libraries)

0− FOexec (Oat files)
(2)

V Ainst = V Aexec + (FOinst + δgap) (3)

E. Identifying Special Function Invocation

Since packers may hook system library methods to prevent
the memory data from being dumped by unpackers, to disclose
this packing behavior, Happer identifies the hooked methods
invoked by the packed app and the details are shown in Fig. 8,
in which identify_special_invocation takes each instruction
address (i.e., address) recorded in the ETM stream and the
address-method mapping (i.e., map) as the inputs.

Specifically, to recover the call stack for each executed
instruction, we use a stack (i.e., stack) to record each system
method invoked by the app. In detail, in Line 4, every invoked
system method is pushed into stack. Similarly, in Line 20, each
invoked app method is pushed into stack. Moreover, since it
is hard to decompile the packed app in advance due to the

16

APPENDIX

A. Packing Behaver Analyzing

Algorithm 3: Identifying invocations to hooked methods.
input : address is the address of an instruction recorded by the ETM;

map is the mapping from instruction to method.
output : hook, the set containing the hooked methods invoked by the target app.

1 Function identify_special_invocation(address, map):
2
3
4
5

if address is the start address of a system method then
 // An invocation to the system method.
 method = map[address]; stack.push(method)
else if (method = map[address]) != NULL then

6
7
8

// An invocation returns to the system method.
last_method = stack.pop(); popup_method = last_method
while popup_method != method do

9 if popup_method == APP∗ and last_method == APP∗ then
10
11
12

// An invocation to the hooked method is found.
type = stack.peek(0) == method ? CALLER : CALLEE
hook.add(<stack.peek(0), type>)

13 end
14 popup_method = stack.pop()
15 end
16
17 else
18
19

stack.push(method)

// An invocation to the application method.
if stack.peek(0) != APP∗ then

20 stack.push(APP)
21 end
22 end
23 return

* APP presented in the algorithm refers to the method defined in the target app.

1) Special Function Invocation: Since the sophisticated pack-
ers can hook special library functions to prevent the memory
data from being dumped to the storage by leveraging these
functions (more details in §V-B5), we also identify the invoca-
tions to the hooked library functions and Algorithm 3 shows
the identification mechanism, which takes the the address of
the instruction to be executed (i.e., address) and the mapping
from instruction address to method (i.e., map) as the inputs.

Specifically, to maintain the method invocation details, we
leverage a stack structure stack to call the nested invocations
to both the system methods and the customized methods of
the packed app (Line 4 and 20). We identify the invocations
to hooked system library functions based on the heuristic, if a
function is hooked/wrapped, the customized code of the packed
app is first invoked and then the target function is actually
invoked by the customized code. Consequently, we examine
the call stack stack to check whether there is a hooked method
invoked by the packed app (Line 5-16). (TBD: more information)

While recovering the method invocations, we reconstruct
the runtime call stack, which facilitates the recognition of the
invocation to the hooked system method. More specifically, in
line 4, every invoked system method is pushed into the stack.
Similarly, in line 28, we push the invoked application method
into the stack. Since it is hard to decompile the packed app in
advance due to code protection methods adopted by the packer,
we artificially introduce the APP method, which represents the
app-defined method.

In line 6-16, we examine the call stack to check whether
a hooked method has been invoked by the packed app. In
detail, if the invocation returns from the app-defined method to
the system method, and there are more than one APP method
existed in the stack, we consider a hooked method has been
called. Intuitively, the target method of the returned invocation

is treated as the hooked method. However, we notice that the
hooked method identified through this way may be the caller
of the exact one. Hence, to correctly locate the hooked method,
we consecutively pop up the method in the call stack until an
APP method is found. And then, the caller of this APP method
is considered as the hooked method, which is further added
into the hook set.

B. Language for Specifying New Behaviors

Core Syntax: There are three major primitives for analysts
to construct the packing behavior identifier, including CALL,
HOOK, and BREAK. The details are as follows.

– CALL<signature, type>: It queries the output of the ETM
stream resolver, the call set, to determine whether a specific
method is invoked by the packed app. The first field of the
primitive specifies the signature of the target method, while
the second field designates how the target method is invoked.

– HOOK<signature, type>: It queries the output of the ETM
stream resolver, the hook set, to find out whether a specific
method is hooked and is explicitly called by the packed app.
The first field of the primitive specifies the signature of the
target method, and the second field indicates the hooked
method is invoked.

– BREAK<address, operation>: It defines a HBRK that in-
structs the application monitor to retrieve the corresponding
runtime CPU register values or the virtual memory data.
The instruction address, at which the HBRK is set, and the
operations, which are performed when the HBRK is hit, are
specified in the fields of this primitive.

Auxiliary Syntax: Happer provides six primitives for analysts
to define the operations that are performed when a HBRK is
hit.

– reg(register, value): It defines the operation related to the
CPU registers. If the value field is unspecified, the value
stored in a particular register is retrieved. Reversely, if the
value field is set, the original value of the register is replaced
by the value.

– mem(address, length, value): It defines the operation related
to the virtual memory. If the value field is not provided, the
data stored in the virtual memory region, whose base address
and length are specified by the first two fields, is obtained.
To the opposite, the data in the memory region is overrode
by the value.

– addr(signature, offset): It returns the virtual address of an
instruction within a specific system method. In detail, the
first field determines the base address of the instruction, that
is, the start address of the method that contains the target
instruction. And the second field specifies the offset between
the address of the target instruction and the base address.

– dex(address, size, item_type, item_field): It defines the
operation that resolves the in-memory dex file. If the fields,
item_type and item_field, remain unspecified, the dex file,
whose based address and size are provided by the first two
fields, is dumped from the virtual memory. If the item_type
field is specified, dex items in the particular type are retrieved.
If both of the item_type and the item_field are given, the
values stored in the particular dex item field are obtained.

16

Fig. 8: Identifying invocations to hooked methods.

F. Behavior Description Language (BDL)

BDL: BDL statements are constituted by BDL expressions. As
shown in Fig. 5, four types of expressions are defined, including
basicExpr, condExpr, funcExpr, and exprList, which separately
specifies a basic expression (e.g., a variable), a condition
checking, a BDL function invocation, and an expression list.
Note that exprList is used to specify the parameters of a BDL
function. There are also four lexical items defined. In particular,
NEWLINE stands for the end of a line. INTCONSTANT refers
to the integer constant, STRINGCONSTANT refers to the literal
constant, and IDENTIFIER refers to the variable. Note that, to
simplify the grammar specification, BDL conditions (condExpr)
includes relational expressions that connect two expressions
via ==, !=, >, and <, and logical expressions that connect
two expressions via && and ||. Since the elements of BDL
conditions are the same as those of BDL expressions, condExpr
is a special case of expression.

The core for BDL is the defined BDL function (funcExpr),
which are used to instruct Happer to perform certain operations
for detecting packing behaviors. Specifically, getArgValue
guides Happer to get a parameter value of a system function,
and setArgValue instructs Happer to set a parameter value of
a system function. In addition, isFuncCalled instructs Happer
to find a system function from the resolved method invoca-
tions. Meanwhile, dumpDex, isDexDiff, and isDexFragment
respectively guide Happer to retrieve the in-memory Dex file
when an instruction is to be executed, find the difference
between the Dex items and the retrieved Dex files, and
determine whether the Dex items of the retrieved Dex file
are loaded at dispersed memory regions. Moreover, isInFile
and isInMemRange separately instruct Happer to check whether
a string constant is included in the content of a system file
and to examine whether a memory address is located in the
memory region of a system library.
Example: Fig.9 presents the specification for the packing

01 // get the first parameter value of the fopen function in libc.so
02 var fopenArg1 <- getArgValue("libc::fopen", 1);
03 // get the first parameter value of the strncmp function in libc.so
04 var strncmpArg1 <- getArgValue("libc::strncmp", 1);
05 // get the second parameter value of the strncmp function in libc.so
06 var strncmpArg2 <- getArgValue("libc::strncmp", 2);

07 // if the following two conditions are satisfied, AEU-1 is found
08 var detected <- 0;
09 if (fopenArg1 == "/proc/tty/drivers"

 && (strncmpArg1 == "goldfish" || strncmpArg2 == "goldfish")) {
10 detected <- 1;
11 }

Fig. 9: The behavior specification for AEU-1.

behavior AEU-1, which prevents the packed app from being
ran in emulators by inspecting the content of the system file
that contains the fingerprint of emulators. Such the behavior
mainly consists of two operations.

First, the packer calls fopen defined in libc.so to access
the system file /proc/tty/drivers, because the content
of this file contains the names of the tty drivers created by
emulators. Accordingly, since the the first parameter of fopen
stores the path of the accessed file, the specification tells Happer
to retrieve the path string by using getArgValue (in Line 2),
whose first parameter specifies the target system function and
the second parameter provides the index of the parameter.
Note that, in order to retrieve the parameter value, getArgValue
internally instructs Happer to set a HBRK to the virtual address
of fopen’s first instruction.

Second, since “goldfish" is the name of the tty driver created
by emulators, the packer will call strncmp to find this string
constant in the content of /proc/tty/drivers in order
to know whether it is running in emulators. Based on this, the
specification commands Happer to retrieve the value of the first
and the second parameter of strncmp by using getArgValue
(in Line 4 and Line 6). Similarly, to accomplish this task,
Happer will set a HBRK to the virtual address of strncmp’s
first instruction.

After getting the runtime parameter values of fopen and
strncmp, Happer further examines whether the retrieved path
string equals “/proc/tty/drivers” and inspects whether “goldfish”
is involved in the string comparison (in Line 9). If both the
conditions are satisfied, the AEU-1 packing behavior is found
(in Line 10).

G. Identification of Packing Bahaviors

Tencent: Both Tencent packers have DDL behaviors. However,
Tencent-16 employs ADG and DDM to prevent the packed app
from being monitored and tracked by debuggers. ¬ Both
Tencent-16 and Tencent-18 call DexFile.loadDex to load the
protected Dex file (DDL-2). Tencent-16 forks a process and
attaches it to itself to prevent the packed app from being
analyzed by ptrace-based debuggers (ADG-2). ® Tencent-16
erases the header_item of the protected Dex file, and restores
it before the ART runtime calls DexFile::<init> (DDM-1).
Ali: Ali-16 adopts DDL and DDM to protect the packed app.
¬ It calls DexFile.loadDex to load the protected Dex file at

17

Fig. 8: Identifying invocations to hooked methods.

code protections adopted by the packer, we introduce the APP
method to represent the app-defined method.

After recovering the runtime call stack, Happer determines
whether a system library method is hooked based on the
heuristic: the customized code of the packed app is first
executed and then the hooked method is invoked by the
customized code. In detail, in Line 6-16, Happer examines
stack to check whether a hooked method has been invoked by
the packed app. If the invocation returns from the app-defined
method to the system method and there are more than one APP
method presented in stack, we think that a hooked method has
been invoked and the target of the returned invocation is the
hooked method. However, we notice that the target identified
through this way may be the caller of the hooked method.
Accordingly, to locate the exact one, we consecutively pop
up the method in the call stack until an APP method is found.
Then, the caller of this APP method is considered as the hooked
method, which will be added into the hook set.

F. Behavior Description Language (BDL)

BDL: BDL statements are constituted by BDL expressions.
As shown in Fig. 5, four types of expressions are defined,
including basicExpr, condExpr, funcExpr, and exprList, which
specifies a basic expression (e.g., a variable), a condition
checking, a BDL function invocation, and an expression list,
respectively. Note that exprList is used to specify the parameters
of a BDL function. There are also four lexical items defined.
In particular, NEWLINE, INTCONSTANT, STRINGCONSTANT,
and IDENTIFIER refers to the end of a line, the integer constant,
the literal constant, and the variable, respectively. Note that, to
simplify the grammar specification, BDL conditions (condExpr)
includes relational expressions that connect two expressions
via ==, !=, >, and <, and logical expressions that connect two
expressions via && and ||.

01 // get the first parameter value of the fopen function in libc.so
02 var fopenArg1 <- getArgValue("libc::fopen", 1);
03 // get the first parameter value of the strncmp function in libc.so
04 var strncmpArg1 <- getArgValue("libc::strncmp", 1);
05 // get the second parameter value of the strncmp function in libc.so
06 var strncmpArg2 <- getArgValue("libc::strncmp", 2);

07 // if the following two conditions are satisfied, AEU-1 is found
08 var detected <- 0;
09 if (fopenArg1 == "/proc/tty/drivers"
 && (strncmpArg1 == "goldfish" || strncmpArg2 == "goldfish")) {
10 detected <- 1;
11 }

Fig. 9: The behavior specification for AEU-1.

The core for BDL is the defined BDL function (funcExpr),
which is used to instruct Happer to perform certain operations
for detecting packing behaviors. More specifically, getArgValue
guides Happer to get a parameter value of a system function,
and setArgValue instructs Happer to set a parameter value of
a system function. In addition, isFuncCalled instructs Happer
to find a system function from the resolved method invoca-
tions. Meanwhile, dumpDex, isDexDiff, and isDexFragment
respectively guides Happer to retrieve the in-memory Dex file
when an instruction is to be executed, find the difference
between the Dex items and the retrieved Dex files, and
determine whether the Dex items of the retrieved Dex file
are loaded at dispersed memory regions. Moreover, isInFile
and isInMemRange instructs Happer to check whether a string
constant is included in the content of a system file and to
examine whether a memory address is located in the memory
region of a system library, respectively.
Example: Fig.9 presents the specification for the packing
behavior AEU-1, which prevents the packed app from being run
in emulators by inspecting the content of the system file that
contains the fingerprint of emulators. Such behavior mainly
consists of two operations.

First, the packer calls fopen defined in libc.so to access
the system file /proc/tty/drivers, because the content
of this file contains the names of the tty drivers created by
emulators. Accordingly, since the first parameter of fopen stores
the path of the accessed file, the specification tells Happer
to retrieve the path string by using getArgValue (in Line 2),
whose first parameter specifies the target system function and
the second parameter provides the index of the parameter.
Note that, in order to retrieve the parameter value, getArgValue
internally instructs Happer to set a HBRK to the virtual address
of fopen’s first instruction.

Second, since “goldfish" is the name of the tty driver created
by emulators, the packer will call strncmp to find this string
constant in the content of /proc/tty/drivers in order
to know whether it is running in emulators. Based on this
observation, the specification commands Happer to retrieve
the value of the first and the second parameter of strncmp by
using getArgValue (in Line 4 and Line 6). Similarly, to retrieve
the parameter value, Happer will set a HBRK to the virtual
address of strncmp’s first instruction.

After getting the runtime parameter values of fopen and

17

strncmp, Happer examines whether the retrieved file path
equals “/proc/tty/drivers” and the string “goldfish” is involved
in the string comparison (in Line 9). If both the conditions are
satisfied, the AEU-1 packing behavior is found (in Line 10).

G. Identification of Packing Bahaviors

Tencent: Both Tencent-16 and Tencent-18 packers have DDL
behaviors. However, Tencent-16 also employs ADG and DDM
to prevent the packed app from being monitored and tracked
by debuggers. ¬ Both of packers call DexFile.loadDex to load
the protected Dex file (DDL-2). Tencent-16 forks a process
and attaches it to itself to prevent the packed app from being
analyzed by ptrace-based debuggers (ADG-2). ® Tencent-16
erases the header_item of the protected Dex file, and restores
it before the ART runtime calls DexFile::<init> (DDM-1).
Ali: Ali-16 adopts DDL and DDM to protect the packed app.
¬ It calls DexFile.loadDex to load the protected Dex file at
runtime (DDL-2). The packer combines DDM-2 and DDM-3 to
modify the loaded Dex file at runtime. In detail, it dynamically
modifies the annotations_off field of class_def_items
and adjusts the offset value stored in the code_off field of
encoded_method items when the native library introduced by
the packer is loaded for the first time.
Bangcle: The packing behaviors of Bangcle-18 includes ADG,
DDL, and SLH. ¬ This packer forks a process and injects the
created process to the packed app, which prevent the packed
app from being attached by ptrace-based debuggers (ADG-2).
 The packer dynamically loads the protected Dex file through
invoking DexPathList.makePathElements (DDL-3). ® Bangcle-
18 hooks several system library methods (e.g.,ptrace, open,
read, write, and close) defined in libart.so and libc.so
(SLH-1/2). For example, it hooks ptrace and inserts additional
code to handle the PTRACE_DETACH parameter. Specifically,
when ptrace is called with PTRACE_DETACH, the process of the
packed app will be deliberately killed.
Ijiami: Both Ijiami-16 and Ijiami-18 apply ADG, AEU, ADI,
TCK, and SLH to packing the app. ¬ They call isDebug-
gerConnected through the JNI reflection to detect debuggers
(ADG-1). Moreover, these packers hook AddListener and
EnableMethodTracing declared in the Instrumentation class
to prevent them from being invoked by debuggers (ADG-4/5). In
addition, the packers hook __android_log_buf_write to prevent
the leakage of the log message (ADG-6). To detect whether
the packed app is running in Qemu [28], Ijiami packers access
the /proc/tty/drivers file to check the presence of Qemu TTY
driver (AEU-1). Moreover, values of specific system properties,
especially for those introduced by Qemu, are examined (AEU-
2/3). ® These packers also implement ADI-1 to prevent the
app from being unpacked by ZjDroid. ¯ Furthermore, Ijiami
packers deploy TCK-1 to protect the packed app. Specifically,
the time limit for the target app to execute a specific native task
is one second. Besides the behaviors for checking the running
environment, Ijiami-16 adopts DDM-4 and Ijiami-18 uses DOM-1
respectively to protect the Dex file of the packed app. ° Ijiami-
16 fills code_items with valid bytecode at runtime. ± Ijiami-
18 dynamically adjusts the dex_code_item_offset_ field of

each related ArtMethod object to make it point to the dispersed
code_item. ² Note that behaviors ADG-4/5, DDM-4, and DOM-1
are implemented through hooking the related methods declared
in system libraries libart.so and liblog.so, therefore,
both of Ijiami packers have behaviors SLH-1/3.
Kiwi: DOM and DDF are realized by Kiwi-18 to protect the
packed app. ¬ It inserts a method invocation to the static
initialization method of each protected Java class. The method
modifies the corresponding mirror::Class object via the na-
tive code (DOM-2). In detail, each ArtMethod object referred by
the methods_ field of the mirror::Class object is dynamically
modified by the packer. Specifically, invalid values stored in the
access_flags field and the dex_code_item_offset_ field of
each ArtMethod object are replaced with valid ones. Kiwi
makes the offset value stored in the dex_code_item_offset_
field of an ArtMethod object refers to a dispersed code_item
element (DDF-3).
Testin: Testin-18 uses TCK, DDL, and JNT to protect the packed
app. ¬ The packer leverages TCK-1 to prevent the target app
from being debugged. More specifically, the predefined time
limit is 10 seconds. Moreover, Testin-18 calls DexPath-
List.makePathElements to dynamically load the protected Dex
file (DDL-3). ® This packer uses the native code to reimplement
each declared activity’s lifecycle method, including onCreate,
onPause, and onResume (JNT-1).

18

	Introduction
	Background
	Hardware Features of ARM Platform
	A Motivating Example

	High-level System Design
	Overview
	Workflow
	Challenges and Solutions

	Monitoring Runtime Behaviors
	Tracing Execution Flow
	Fetching Memory Data

	Analyzing Packing Behaviors
	Resolving ETM Stream
	Behavior Description Language (BDL)
	Identifying Packing Behavior

	Unpacking Apps
	Determining Dex Data Collection Points
	Collecting Dex Data
	Reassembling Dex Data

	Evaluation
	Identification of Packing Behaviors
	Effectiveness of Unpacking
	Assistance to Static Analysis
	Overhead
	Efforts for Composing Behavior Specification

	Discussion
	Related Work
	Conclusion
	Appendix
	The Used ETM and MMU Registers
	Calculating Physical Memory Address
	Inserted Memory Loading Instructions
	Constructing Address-Function Map
	Identifying Special Function Invocation
	Behavior Description Language (BDL)
	Identification of Packing Bahaviors

