
UI Obfuscation and Its Effects on
Automated UI Analysis for Android Apps

Hao Zhou
The Hong Kong Polytechnic

University
Hong Kong, China

cshaoz@comp.polyu.edu.hk

Ting Chen∗
University of Electronic Science and

Technology of China
Chengdu, China

brokendragon@uestc.edu.cn

Haoyu Wang
Beijing University of Posts and

Telecommunications
Beijing, China

haoyuwang@bupt.edu.cn

Le Yu
The Hong Kong Polytechnic

University
Hong Kong, China

cslyu@comp.polyu.edu.hk

Xiapu Luo∗
The Hong Kong Polytechnic

University
Hong Kong, China

csxluo@comp.polyu.edu.hk

Ting Wang
Pennsylvania State University

Pennsylvania, USA
inbox.ting@gmail.com

Wei Zhang
Nanjing University of Posts and

Telecommunications
Nanjing, China

zhangw@njupt.edu.cn

ABSTRACT
The UI driven nature of Android apps has motivated the devel-
opment of automated UI analysis for various purposes, such as
app analysis, malicious app detection, and app testing. Although
existing automated UI analysis methods have demonstrated their
capability in dissecting apps’ UI, little is known about their effec-
tiveness in the face of app protection techniques, which have been
adopted by more and more apps. In this paper, we take a first step
to systematically investigate UI obfuscation for Android apps and
its effects on automated UI analysis. In particular, we point out the
weaknesses in existing automated UI analysis methods and design
9 UI obfuscation approaches. We implement these approaches in a
new tool named UIObfuscator after tackling several technical chal-
lenges. Moreover, we feed 3 kinds of tools that rely on automated
UI analysis with the apps protected by UIObfuscator, and find that
their performances severely drop. This work reveals limitations of
automated UI analysis and sheds light on app protection techniques.

CCS CONCEPTS
• Security and privacy→ Software security engineering.

∗The corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416642

ACM Reference Format:
Hao Zhou, Ting Chen∗, HaoyuWang, Le Yu, Xiapu Luo, TingWang, andWei
Zhang. 2020. UI Obfuscation and Its Effects on Automated UI Analysis for
Android Apps. In 35th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE ’20), September 21–25, 2020, Virtual Event, Australia.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3324884.3416642

1 INTRODUCTION
Millions of Android apps are available in Google Play and third-
party Android app markets. Due to the UI driven nature of Android
apps, many automated UI analysis methods have been proposed [21,
24, 27, 37, 38, 41, 47–51, 59, 60, 64, 65] for various purposes, such
as, UI centric app analysis [21, 47, 59, 60], UI based repackaged app
detection [27, 41, 48, 49, 51, 64, 65], UI driven app testing [20, 37–
39, 50], and many other applications that rely on the correct UI
information extracted from apps [22, 23, 25, 26, 28, 30, 31, 43, 52,
62, 63, 67].

Existing automated UI analysis methods can be classified into
4 categories, including (1) static layout (or static view hierarchy)
based methods; (2) static activity transition based methods; (3)
runtime view hierarchy based methods; (4) runtime screenshot
based methods. The methods in categories (1) and (2) conduct static
analysis on apps to collect UI information, while the methods in
categories (3) and (4) perform dynamic analysis to extract UI infor-
mation. The static analysis based methods are more scalable than
dynamic analysis based methods, but the latter can collect more
accurate UI information than the former.

As more and more apps adopt protection mechanisms to impede
app analysis [32, 34, 54, 57], little is known whether the existing
automated UI analysis methods for apps are still effective. One pos-
sible reason may be that existing app protection mechanisms focus
on protecting the bytecode of apps, such as, the obfuscation meth-
ods for raising the bar of understanding the bytecode [34, 54], and

https://doi.org/10.1145/3324884.3416642
https://doi.org/10.1145/3324884.3416642

ASE ’20, September 21–25, 2020, Virtual Event, Australia Hao Zhou, Ting Chen∗ , Haoyu Wang, Le Yu, Xiapu Luo, Ting Wang, and Wei Zhang

they alone cannot always protect the UI information of apps, such
as the UI information in the manifest file of apps. Such the blind-
spot gives malware (or repackaged app) makers the opportunity to
leverage UI obfuscation, which manipulates the elements related to
the UI of an app, to obstruct automated UI analysis methods.

To fill the gap, in this paper, we conduct the first systematic
investigation on UI obfuscation mechanisms for Android apps and
their effects on automated UI analysis methods through 3 steps.
First, we identify the weaknesses of existing automated UI analysis
methods by invalidating their implicit/explicit assumptions, and
then propose nine basic UI obfuscation approaches exploiting those
weaknesses (in §3). These basic approaches can be used together to
strengthen the effectiveness of UI obfuscation.

Second, we develop UIObfuscator, a new tool for automatically
obfuscating apps without source code by using our UI obfusca-
tion approaches. It is non-trivial to develop UIObfuscator due to 2
challenges. C1 (invisibility): the effect of UI obfuscation should be
transparent to app users. That is, it should be hard for users to distin-
guish original apps from obfuscated ones. C2 (non-intrusiveness):
the operation of UI obfuscation should neither obstruct interac-
tions between obfuscated apps and app users nor introduce obvious
overhead. We address the challenges by carefully designing and
implementing each UI obfuscation approach (in §4-§7).

Third, we evaluate the impact of UI obfuscation on automated UI
analysis methods used in 3 kinds of major applications, including,
UI centric app analysis [21, 47, 59, 60], UI based repackaged app
detection [27, 41, 48, 49, 51, 64, 65], and UI driven app testing [20, 37–
39, 50]. More precisely, we apply UIObfuscator to randomly selected
apps, and then feed obfuscated apps to the representative tools in
each kind of applications. By comparing their performance on
original apps and obfuscated apps, we observe that UI obfuscation
can significantly decrease the performance of these tools. Moreover,
we evaluate the overhead introduced by UIObfuscator and find that
it incurs at most 15 milliseconds delay to launching obfuscated
apps and produces a slight size expansion. UIObfuscator and the
apps involved in the evaluation are available at https://github.com/
moonZHH/UIObfuscator.

It is worth noting that the insights learnt from the experiments
are also applicable to other applications that rely on the correct UI
information extracted from apps [22, 23, 25, 26, 28, 30, 31, 43, 63,
67] because they use the same UI analysis methods as the studies
examined in this paper. Moreover, our UI obfuscation methods
can help developers protect their apps from being inspected by
adversaries through testing (e.g., anti-fuzzing [35]), and inform app
analysts the limitations of existing automated UI analysis methods.

In summary, we make the following major contributions:

• To the best of our knowledge, it is the first systematic investiga-
tion on UI obfuscation and its effects on automated UI analysis
for Android apps. We not only point out the common weaknesses
for existing automated UI analysis methods but also propose 9
basic UI obfuscation approaches exploiting these weaknesses.

• We design and develop UIObfuscator, a novel tool that imple-
ments the 9 UI obfuscation approaches and can automatically
obfuscate the UI of Android apps without source code.

• We extensively evaluate the impact of UI obfuscation on represen-
tative automated UI analysis methods for 3 kinds of applications.

The results show that proposed UI obfuscation approaches can
impede UI centric app analysis, thwart UI based repackaged app
detection, and obstruct UI driven app testing. This study sheds
light on the design of robust automated UI analysis methods.

2 BACKGROUND
This section introduces the necessary background. In particular,
§2.1, §2.2, and §2.3 are relevant to our UI obfuscation approaches
that exploit dynamic resource loading (in §4.2), app method patch-
ing (in §5.4), and overlay injection (in §6.2), respectively.

2.1 Asset Management in Android Apps
APK: An APK is a compressed file, including one or more dex files
containing the app’s bytecode, a unique manifest file, and multiple
asset (or resource) files, such as bitmaps and layout files [13].
Layout: Layout files determine basic view hierarchies of the app.
When asset files are packaged into an APK, each layout file is com-
pressed and assigned with a unique resource identifier.
AssetManager: Android apps can use 2 classes (i.e., Resources and
AssetManager) to manage their layout files. AssetManager pro-
vides access to all resource files including layout files, and the activ-
ities of an app share a common AssetManager instance. Resources
relies on AssetManager to query layout files.

2.2 Method Execution in Android Runtime
Android Runtime: Before Android 5.0, DVM is the default runtime,
which uses the interpreter to execute the Dalvik bytecode of an app,
which is compiled from Java source code. Afterwards, it is replaced
by ART, and the Dalvik bytecode of an app will be conditionally
transformed to native instructions that can be directly executed.
ArtMethod: In ART, a Java method is represented by an ArtMethod
object, and the object’s dex_code_item_offset_ field refers to the
CodeItem structure that stores the bytecode of this method. If the
execution of an ArtMethod object is handled by the interpreter,
the entry_point_from_interpreter_ field (for Android 5.0, 5.1,
6.0) or the entry_point_from_quick_compiled_code_ field (for
Android versions since Android 7.0) of the ArtMethod object holds
the entry address of the interpreter.
Method Invocation: Besides using the bytecode invoke-virtual
or the compiled code bl, an app can employ Java reflection or na-
tive reflection to call an instance method, which is always invoked
with respect to an object (i.e., the receiver object) [10]. In particu-
lar, the Java/native reflection approach invokes the target function
through calling the Android runtime method ArtMethod::Invoke.
Before executing the method invocation, ART verifies whether the
Java/native reflection is valid by calling the VerifyObjectIsClass
method, which examines whether the receiver of the method invo-
cation is an instance of the class that defines the callee method.

2.3 Window Organization in Android
View: View component is a basic building block for the UI of apps.
By default, each view instance occupies a rectangular area on the
device screen and is responsible for responding user events.
View Hierarchy: A view hierarchy (or a layout) is a tree structure,
where each node represents a view component that composes the UI
of apps and the edge indicates the parent-child relationship among
view components presented in a window.

https://github.com/moonZHH/UIObfuscator
https://github.com/moonZHH/UIObfuscator

UI Obfuscation and Its Effects on
Automated UI Analysis for Android Apps ASE ’20, September 21–25, 2020, Virtual Event, Australia

Window: Each window instance holds the view hierarchy of a UI
component, e.g., the activity, the dialog, or the menu. One important
property of a window is z-order, which denotes the z-axis position
where the view hierarchy will be rendered on the device screen. A
windowwith a larger z-order value will usually conceal the window
with the smaller z-order value completely or partially.
Window Type: Android provides 3 types of windows: (1) applica-
tion window, which contains the view hierarchy of each activity; (2)
system window, which refers to the UI of the system input method,
the system status bar, or the system keyguard. A systemwindow can
be created by normal apps as long as the SYSTEM_ALERT_WINDOW
permission has been granted; (3) sub-window, which is a special
type of windows (e.g., the window of a dialog) affiliated to the
application window or the system window.
Window Flag: Android defines a set of flags to control the window
behaviors. Among them, 4 flags are important to our study:
∗ FLAG_NOT_FOCUSABLE: If set, the window will not intercept the
key or other button events (e.g, clicking the button), and another
window behind it will consume the user event.
∗ FLAG_NOT_TOUCH_MODAL: If set, the pointer events (e.g., touching
the device screen) happened outside of the window will be sent to
another window behind it.
∗ FLAG_WATCH_OUTSIDE_TOUCH: If set, a special notification (i.e.,
MotionEvent.ACTION_OUTSIDE) will be sent to the window to in-
form the touch conducted outside of the window.
∗ FLAG_SECURE: If set, the content of the window will not appear
in the screenshot captured by the common app or grabbed by the
shell command, screencap.

3 OVERVIEW OF OUR UI OBFUSCATION
METHODS FOR APPS

We first point out the common weaknesses of the existing auto-
mated UI analysis methods (in §3.1), and then introduce the basic
ideas of our UI obfuscation approaches exploiting the weaknesses.
The technical details of these approaches are presented in §4-§7.

3.1 Weaknesses in Automated UI Analysis Methods
W1: Static layout based methods parse the layout files to get static
view hierarchies of the app. However, such static view hierarchies
can be easily manipulated.
W2: Static activity transition based methods construct the activity
transition graph (ATG) of the app. They locate activity transition
related APIs (e.g., Activity.startActivity) to determine transi-
tion relationships among app activities. However, since this process
relies on static bytecode analysis, it will be hindered by dynamic
language features.
W3: Runtime view hierarchy based methods usually leverage a UI
testing tool from Google, UIAutomator [18], to dynamically retrieve
the app’s view hierarchies. However, we find that UIAutomator
can only capture the view hierarchy of the topmost focused window.
That is, it cannot obtain layouts of windows that are partially or
completely covered by the others. These methods also suffer from
W1 because changing static view hierarchies may lead to changes
in runtime view hierarchies.

Table 1: Weaknesses exploited by UI obfuscation methods.
Idx MLF SLF IPA ESC RFC PAM UVH MOW PAS

W1 ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

W2 ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗

W3 ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗

W4 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

W4: Runtime screenshot based methods usually employ the shell
command screencap provided by Android or the screenmirroring/-
casting tools [7, 15, 16] to dynamically capture the app’s snapshots
instead of getting the app’s view hierarchies. However, these tools
usually fail to retrieve the visual content of windows protected by
the window flag, FLAG_SECURE.
Remark. The 1st and 2nd categories of methods are more scalable
because they can directly process the APK files without the need of
running the apps. Although the 3rd and 4th categories of methods
can collect more accurate UI information and thus may be more
resilient to UI obfuscation, they need to execute the apps and thus
take much longer time to process each app.

3.2 Basic UI Obfuscation Approaches
Exploiting the above weaknesses, we design 9 basic UI obfuscation
approaches as shown in Table 1.
(1) Modifying Layout File (MLF): Invisible view components are
added to the app’s layout files to modify the view hierarchies.
(2) Substituting Layout File (SLF): Fake layout files are inserted
into the APK while original layout files will be extracted from the
APK and loaded at runtime to restore view hierarchies of the app.
(3) Injecting Proxy Activity (IPA): Additional proxy activities are
injected to modify the app’s ATG by intercepting the direct transi-
tion relationship between the app activities.
(4) Encoding String Constant (ESC): String constants, especially
those indicating the class names of app activities, are encoded to
set additional obstacles for ATG builders.
(5) Rewriting Function Call (RFC): Function calls that involve ac-
tivity transition related APIs are rewritten through the Java reflec-
tion to impede the process of building the ATG.
(6) Patching App Method (PAM): To hide method invocations re-
lated to constructing the ATG, app methods that contain activity
transition related APIs will be first extracted from the APK and then
loaded and executed at runtime to finish the original operations.
(7) Updating View Hierarchy (UVH): Instead of directly modify-
ing layout files, view components will be created and inserted by
bytecode to dynamically update the app’s view hierarchies.
(8) Misusing Overlay Window (MOW): When an app activity is
going to be rendered on the device screen, an overlay window
is launched to seize the window focus to prevent runtime view
hierarchies of the app from being captured by UIAutomator.
(9) Preventing App Screenshot (PAS): FLAG_SECURE is enabled in
each activity of the app to prohibit its visual content from being
presented in the screenshot.

We elaborate more on the design and implementation of MLF
and SLF in §4, IPA, ESC, RFC, and PAM in §5, UVH, and MOW in
§6, PAS in §7, respectively. Note that different UI obfuscation ap-
proaches can be used together to strengthen the effectiveness of UI
obfuscation. For example, using SLF, PAM, MOW and PAS together
can hinder all existing automated UI analysis methods.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Hao Zhou, Ting Chen∗ , Haoyu Wang, Le Yu, Xiapu Luo, Ting Wang, and Wei Zhang

<LinearLayout>
<TextView
android:text="This is a TextView"/>
<Button
android:text="This is a Button"/>

</LinearLayout>

<LinearLayout >

 <TextView

 android:text="This is a TextView" />

 <Button

 android:text="This is a Button" />

</LinearLayout>

<FrameLayout >

 <LinearLayout >

 <!-- including the original layout -->

 <include layout="@layout/origin"/>

 </LineatLayout>

</FrameLayout>

<LinearLayout >

 <TextView />

 <TextView

 android:text="obfuscation" />

 <Button />

</LinearLayout>

<LinearLayout >

 <TextView />

 <TextView

 android:textSize="5dp" />

 <Button />

</LinearLayout>

Injected

FrameLayout

Injected

LinearLayout

Original

LinearLayout

Injected

Normal

TextView

Injected

Invisible

TextView

(a) The original layout.

<FrameLayout> // injected container
<LinearLayout> // injected container
// include the original layout
<include layout="@layout/origin"/>
</LinearLayout>
</FrameLayout>

<LinearLayout >

 <TextView

 android:text="This is a TextView" />

 <Button

 android:text="This is a Button" />

</LinearLayout>

<FrameLayout >

 <LinearLayout >

 <!-- including the original layout -->

 <include layout="@layout/origin"/>

 </LineatLayout>

</FrameLayout>

<LinearLayout >

 <TextView />

 <TextView

 android:text="obfuscation" />

 <Button />

</LinearLayout>

<LinearLayout >

 <TextView />

 <TextView

 android:textSize="5dp" />

 <Button />

</LinearLayout>

Injected

FrameLayout

Injected

LinearLayout

Original

LinearLayout

Injected

Normal

TextView

Injected

Invisible

TextView

(b) Inject view containers.

<LinearLayout> // original container
<TextView ∗ /> // original widget
<TextView // injected widget
android:text="obfuscation" ∗ />
<Button ∗ /> // original widget
</LinearLayout>

<LinearLayout >

 <TextView

 android:text="This is a TextView" />

 <Button

 android:text="This is a Button" />

</LinearLayout>

<FrameLayout >

 <LinearLayout >

 <!-- including the original layout -->

 <include layout="@layout/origin"/>

 </LineatLayout>

</FrameLayout>

<LinearLayout >

 <TextView />

 <TextView

 android:text="obfuscation" />

 <Button />

</LinearLayout>

<LinearLayout >

 <TextView />

 <TextView

 android:textSize="5dp" />

 <Button />

</LinearLayout>

Injected

FrameLayout

Injected

LinearLayout

Original

LinearLayout

Injected

Normal

TextView

Injected

Invisible

TextView

(c) Inject normal widgets.

<LinearLayout> // original container
<TextView ∗ /> // original widget
<TextView // injected widget
android:textSize="5dp" ∗ />
<Button ∗ /> // original widget
</LinearLayout>

<LinearLayout >

 <TextView

 android:text="This is a TextView" />

 <Button

 android:text="This is a Button" />

</LinearLayout>

<FrameLayout >

 <LinearLayout >

 <!-- including the original layout -->

 <include layout="@layout/origin"/>

 </LineatLayout>

</FrameLayout>

<LinearLayout >

 <TextView />

 <TextView

 android:text="obfuscation" />

 <Button />

</LinearLayout>

<LinearLayout >

 <TextView />

 <TextView

 android:textSize="5dp" />

 <Button />

</LinearLayout>

Injected

FrameLayout

Injected

LinearLayout

Original

LinearLayout

Injected

Normal

TextView

Injected

Invisible

TextView

(d) Inject invisible widgets.

Figure 1: Modify layout file.

4 MANIPULATING STATIC LAYOUT
This section presents 2 basic UI obfuscation approaches, namely
modifying layout files (in §4.1) and substituting layout files (in §4.2),
in order to exploit W1.

4.1 Modifying Layout File (MLF)
Design: We insert additional view components to the app’s origi-
nal layout files. Consequently, from the viewpoint of static layout
based methods, the static view hierarchies of the obfuscated app
are different from those of the original app. To fulfill the invisibility
requirement (i.e., C1), we adjust properties (e.g., size and color) of
injected view components to make them transparent to app users.
Note that, since MLF modifies original layout files of the app, which
makes the obfuscated app’s runtime view hierarchies different from
those of the original one. Thus, MLF can also exploit W3.
Implementation: We implement this UI obfuscation approach
through 2 ways. One is to inject redundant view containers. An ex-
ample is shown in Figure 1b. We regard the injected FrameLayout
and LinearLayout as redundant because the view container has
only one child node and the unique child node is also a view con-
tainer. That is, if we remove the view container and place its child
node to its position on the tree structure, no visual difference will
be caused. By comparing the screenshot of the original layout (i.e.,
Figure 1a) with that of the modified layout (i.e., Figure 1b), we can
see that it is difficult to differentiate between them.

The other way is to insert additional view widgets. Figure 1c
gives an example of adding a TextView widget into the original
layout file. To make the injected TextView widget transparent,
we leave the android:text property unspecified to prevent the
widget from being noticed through its textual contents. Note that
the TextView is still not fully invisible because there will be a visible
placeholder presented in the captured screenshot. To tackle this
issue, in Figure 1d, we adjust the font size of the widget to a rather
small value (e.g., 5dp in this example), and thus it is difficult to find
the difference between Figure 1a and Figure 1d.

4.2 Substituting Layout File (SLF)
Design: We replace the app’s original layout files with fake ones
so that static view hierarchies extracted by static layout based UI
analysis methods will be different from the original ones. To fulfill
the non-intrusiveness requirement (i.e., C2), we load the original
assets at runtime so that the loaded layout files will substitute the
fake ones and recover the original view hierarchies. Note that SLF is
different from MLF because it does not modify the view hierarchies
defined in the original layout files.

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

UI Obfuscation and Its Effects on
Automated UI Analysis for Android Apps ESEC/FSE ’20, November 8–13, 2020, Sacramento, California, United States

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

Table 2: Weaknesses exploited by UI obfuscation methods.
Idx MLF UVH IPA ESC RFC SLF PAM MOW PAS

W1 ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

W2 ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗

W3 ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗

W4 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Figure 1: Algorithm for substituting layout file.
Algorithm 1: Substitute layout file at runtime.
input :p, the path of the asset file, which is going to be loaded.

1 Function substitute_layout_file():
2 mAssetManager = initialize_AssetManager()
3 mAssetManager.addAssetPath(p)
4 Collection<Resources> mResources = null;
5 if Build.VERSION.SDK_INT >= KITKAT then
6 mResourcesManager = obtain_ResourcesManager()
7 mResources = get_Resources(mResourcesManager)
8 else
9 mActivityThread = obtain_ActivityThread()

10 mResources = get_Resources(mActivityThread)
11 end
12 foreach resource in mResources do
13 resource.mAssets = mAssetManager
14 end
15 return

also suffer from W1 because changing static view hierarchies may
lead to changes in runtime view hierarchies.
W4: Runtime screenshot based methods usually employ tools (e.g.,
the shell command, screencap, provided by Android or the screen
mirroring/casting utilities [7, 16, 17]) to dynamically capture the
app’s snapshots instead of the app’s view hierarchies. However,
these tools normally fail to retrieve the visual content of windows
protected by the window flag, FLAG_SECURE.

3.2 Nine UI Obfuscation Approaches
Exploiting these weaknesses, we design the following nine UI ob-
fuscation approaches, which can be used together to strengthen
the effectiveness of UI obfuscation, e.g., using SLF, PAM, MOW and
PAS together can hinder all existing automated UI analysis methods.
Table 2 lists the weaknesses and the corresponding UI obfuscation
approaches.
(1) Modifying Layout File (MLF): Invisible view components are
added to the app’s layout files to modify the view hierarchies.

(2) Updating View Hierarchy (UVH): Instead of directly modi-
fying layout files, view components will be created and inserted by
bytecode to dynamically update the app’s view hierarchies.
(3) Injecting Proxy Activity (IPA): Additional proxy activities,
which are used to intercept the direct transition relationship be-
tween two activity components for modifying the app’s ATG.
(4) Encoding String Constant (ESC): String constants, especially
those indicating the class names of app activities, are encoded to
set additional obstacles for ATG builders.
(5) Rewriting Function Call (RFC): Function calls that involve
activity-transition related APIs are rewritten through the Java re-
flection to impede the process of building the ATG.
(6) Substituting Layout File (SLF): Fake layout files are inserted
into the APK while original layout files will be extracted from the
APK and loaded at runtime using the dynamic resource loading in
order to restore view hierarchies of the app.
(7) Patching App Method (PAM): To hide method invocations
related to constructing the ATG, app methods that contain activity
transition related APIs will be first extracted from the APK and then
loaded and executed at runtime through the dynamic code loading
to finish original operations.
(8) Misusing Overlay Window (MOW): When an app activity
is going to be rendered on the device screen, an overlay window
is launched to seize the window focus to prevent runtime view
hierarchies of the app from being captured by UIAutomator.
(9) Preventing App Screenshot (PAS): FLAG_SECURE is enabled
in each activity of the app to prohibit its visual content from being
presented in the screenshot.

We elaborate more on the design and implementation of MLF
and SLF in §4, IPA, ESC, RFC, and PAM in §5, UVH, and MOW in
§6, PAS in §7, respectively. Note that some approaches reuse code
obfuscation techniques in the implementation, however, these ap-
proaches are different from general code obfuscation methods (e.g.,
ProGuard [15] obfuscates names of app classes, methods, and fields),
which cannot affect automated UI analysis.

4 MANIPULATING STATIC LAYOUT
The static layout based methods parse the layout files to construct
the static view hierarchies of the apps. Aiming at such approaches,
we design two UI obfuscation approaches, including modifying the
layout files (§4.1) and substituting the layout files (§4.2).

4.1 Modifying Layout File
Design: We insert additional view components to the original lay-
out files of the app. Consequently, from the viewpoint of the static
layout based methods, the static view hierarchies of the obfuscated
app are different from the ones of the original app. To fulfill the
invisibility requirement (i.e., C1), we adjust the properties (e.g.,
size and color) of the injected view components to make them
transparent to app users.
Implementation:We realize this UI obfuscation approach through
two ways. The first way is to inject redundant view containers. An
example is shown in Figure 2b.We regard the injected FrameLayout
and LinearLayout as redundant, because they meet the following
two requirements: (1) The view container has only one child node;
(2) The unique child node refers to another view container. In other
words, if we remove the view container and place its child node to

3

Figure 2: Algorithm for substituting layout file.

Implementation: Since AssetManager handles queries about lay-
out contents, to implement the layout file substitution, we create a
new AssetManager instance to load the asset file containing origi-
nal layout definitions and use it to replace the original one created
by Android framework so that the new instance will answer the
queries from the obfuscated app (e.g., findViewById()). Figure 2
shows the algorithm for conducting this process. In line 2-3, we ini-
tialize a new instance of AssetManager, and call the addAssetPath
method to let the created AssetManager instance load the origi-
nal assets. Note that, since addAssetPath is a hidden method, we
exploit the Java reflection to access it.

Then, we use the created AssetManager instance to replace the
ones held by app activities or referenced by existing Resources
objects. In practice, we only update the AssetManager instances ref-
erenced by Resources objects because we implement the layout file
substitution in the onCreatemethod of the inherited Application
class of the app. In this case, since the onCreatemethod will be exe-
cuted before the creations of app activities and Android framework
will make each app activity hold the AssetManager instance refer-
enced by the associated Resources object (i.e., the one created by
us), there is no need to substitute the AssetManager objects held by
app activities. In line 5-11, we first collect Resources objects stored
in the mResourceReferences field of the ResourcesManager in-
stance, as well as the objects stored in the mActiveResources field
of the ActivityThread instance. Then, in line 12-14, we use the
newly created AssetManager instance to update the instance stored
in the mAssets field of each collected Resources object.

UI Obfuscation and Its Effects on
Automated UI Analysis for Android Apps ASE ’20, September 21–25, 2020, Virtual Event, Australia

1 // Code presented in the source Activity A.
2 public void onClick(∗) {
3 Intent target = new Intent(∗, B.class);
4 P.originIntent = target;
5 Intent proxy = new Intent(∗, P.class);
6 startActivity(proxy); // A−>P
7 }
8 // Code for the proxy Activity P.
9 public staic Intent originIntent;
10 protected void onCreate(∗) {
11 startActivity(P.originIntent); // P−>B
12 finish(); // necessary
13 }
14 // Code presented in the target Activity B.
15 public class B extends Activity
16 { /∗ nothing to be changed ∗/ }

(a) Code snippet.

A.class

1. public void onClick(*) {

2. // Intent i = new Intent(*, B.class);

3. Intent i = new Intent(*, P.class);

4. startActivity(i);

5. }

B.class

11. public class B extends Activity {

12. // original code is omitted

13. }

P.class (Proxy Activity)

6. protected void onCreate(*) {

7. Intent i = new Intent(*, B.class);

8. startActivity(i);

9. finish();

10. }

A

C B

D

E

A

C

BD

E

P

Source

Activity

Target

Activity

Proxy

Activity

(b) Original ATG.

A.class

1. public void onClick(*) {

2. // Intent i = new Intent(*, B.class);

3. Intent i = new Intent(*, P.class);

4. startActivity(i);

5. }

B.class

11. public class B extends Activity {

12. // original code is omitted

13. }

P.class (Proxy Activity)

6. protected void onCreate(*) {

7. Intent i = new Intent(*, B.class);

8. startActivity(i);

9. finish();

10. }

A

C B

D

E

A

C

BD

E

P

Source

Activity

Target

Activity

Proxy

Activity

(c) Modified ATG.

Figure 3: Injecting proxy activity.

5 DISTORTING CONSTRUCTED ATG
To exploit W2, we design 2 basic UI obfuscation approaches to
make the constructed ATG of the obfuscated app differ from that
of the original app. First, we inject proxy activities to modify the
ATG (§5.1). Second, we compromise the process of constructing the
ATG to make the built ATG incomplete by using code obfuscation
techniques: encoding string constants (in §5.2), rewriting function
calls via the Java reflection (in §5.3), and patching app methods
through the dynamic code loading (in §5.4).

5.1 Injecting Proxy Activity (IPA)
Design: We inject additional activity components into the app to
modify its original ATG by strategically introducing more nodes
and edges to the ATG. More precisely, the injected activities will
serve as the proxy that intercepts direct transitions among original
app activities. Note that app users may notice the injected proxy
activities because they will be passively pushed into the app’s back
stack [45, 46]. In this case, if app users continuously click the BACK
button of the device, proxy activities will be popped from the stack,
re-rendered on the device screen, and will be seen by the app user.
To tackle this issue for meeting the invisibility requirement (i.e.,
C1), we need to maintain the back stack of the app unchanged.
Implementation: Figure 3a shows the code snippet for dynamically
injecting a proxy activity. The original and the modified ATG of the
target app are shown in Figure 3b and Figure 3c, respectively. In
line 5-6, we break the original activity transition A→B, and set up
a new transition from the source activity A to the proxy activity P
(i.e., A→P). Then, in line 11, we create a transition from the proxy
activity P to the target activity B (i.e., P→B). Hence, the original
activity transitionA→B is replaced by the new oneA→P→B. Note
that, currently, we just handle the explicit intent.

To accurately instruct the proxy activity to launch the target
activity, we use the variable oriдinIntent in line 9 to store the intent
object used to launch the target activity by the original app. Since
this variable contains the information (e.g., class name) about the
target activity, the proxy activity can pass it to the startActivity
API in line 11 to launch the target activity. To make the proxy
activity invisible to app users, after the target activity has been
launched (e.g., B in Figure 3c), we actively remove the proxy activity
(e.g., P in Figure 3c) from the app’s back stack by calling the finish
function of the Activity class (i.e., line 12). Consequently, even
if app users navigate back from the target activity to the source

1 // Code presented in the source Activity, S.
2 public void onClick(View view) {
3 Intent intent = new Intent();
4 String encode = "eman_ytivitca"; // the encoded string
5 String decode = new StringBuilder(encode).reverse().toString();
6 if (condition_1) // intent.setClassName(S.getPackageName(),"activity_name")
7 intent.setClassName(S.getPackageName(), decode);
8 if (condition_2) { // intent = new Intent(S.this, activity_name.class)
9 Class<?> targetActivityClass = Class.forName(decode);
10 intent = new Intent(S.this, targetActivityClass);
11 }
12 startActivity(intent); // original code
13 }

Figure 4: Encode string constant.

1 // Code presented in the source Activity, S.
2 public void onClick(View view) {
3 Intent i = new Intent(S.this, TargetActivity.class);
4 // startActivity(i) // original invocation
5 Class<?> clazz = Class.forName("Activity"); // assume S extends Activity
6 Method method = clazz.getMethod("startActivity", new Class[] {∗});
7 method.invoke(S.this, i); // call the framework API, Activity.startActivity
8 }

Figure 5: Rewrite function call.

activity, the transition flowwill not be blocked by the proxy activity,
and thus app users will not notice the presence of the proxy activity.

5.2 Encoding String Constant (ESC)
Design: ATG builders resolve the intent objects passed to activity
transition related APIs to find the target activity (i.e., the receiver of
each intent object). Developers usually explicitly specify the intent
receiver through its class name (i.e., condition_1 in Figure 4) or
its corresponding java.lang.Class object (i.e., condition_2 in Fig-
ure 4). Exploiting these observations, this UI obfuscation approach
encodes string constants, especially the class names of target activi-
ties, to make it difficult for ATG builders to correctly find the target
of each activity transition. Consequently, the constructed ATG of
the obfuscated app will be incomplete.
Implementation: Figure 4 shows a simple example of encoding
the class name of the activity. In line 4, the string is encoded by
reversing the order of characters, “activity_name", which is the
class name of the target activity. It is worth noting that other sophis-
ticated string encoding algorithms can also be employed to prevent
ATG builders from getting the original string. In line 5, the decoding
method is invoked to recover the original string. Furthermore, if
the app specifies the intent receiver using its class name, the decode
variable, a substitution of the original string, will be sent to the
setClassName method (i.e., line 7). Otherwise, the decoded string
will be passed to the Class.forName API (i.e., line 9) to retrieve the
java.lang.Class object of the target activity, which will be used
to specify the receiver (i.e., the target activity) of the intent object.

5.3 Rewriting Function Call (RFC)
Design: Locating the invocations of activity transition related APIs
is another critical step in building the app’s ATG. Based on this
observation, this UI obfuscation approach hides such invocations
to ATG builders by rewriting such function calls through Java re-
flection. Consequently, the constructed ATG of the obfuscated app
will have less edges (or even less nodes) than the correct one.
Implementation: Figure 5 shows an example of rewriting the func-
tion call. In line 5-7, the original call to the startActivitymethod
is rewritten using the Java reflection. We can also encode the names

ASE ’20, September 21–25, 2020, Virtual Event, Australia Hao Zhou, Ting Chen∗ , Haoyu Wang, Le Yu, Xiapu Luo, Ting Wang, and Wei Zhang

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

UI Obfuscation and Its Effects on
Automated UI Analysis for Android Apps ESEC/FSE ’20, November 8–13, 2020, Sacramento, California, United States

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

1 // Code presented in the source Activity, S.
2 public void onClick(View view) {
3 Intent intent = new Intent();
4 String encode = "eman_ytivitca"; // the encoded string
5 String decode = new StringBuilder(encode).reverse().toString();
6 if (condition_1) // intent.setClassName(S.getPackageName(),"activity_name")
7 intent.setClassName(S.getPackageName(), decode);
8 if (condition_2) { // intent = new Intent(S.this, activity_name.class)
9 Class<?> targetActivityClass = Class.forName(decode);
10 intent = new Intent(S.this, targetActivityClass);
11 }
12 startActivity(intent); // original code
13 }

Figure 4: Encode string constant.
1 // Code presented in the source Activity, S.
2 public void onClick(View view) {
3 Intent i = new Intent(S.this, TargetActivity.class);
4 // startActivity(i) // original invocation
5 Class<?> clazz = Class.forName("Activity"); // assume S extends Activity
6 Method method = clazz.getMethod("startActivity", new Class[] {∗});
7 method.invoke(S.this, i); // call the framework API, Activity.startActivity
8 }

Figure 5: Rewrite function call.
or its corresponding java.lang.Class object (i.e., condition_2 in
Figure 4). Exploiting this observation, this UI obfuscation approach
encodes string constants, especially those class names of target
activities, to make it difficult for ATG builders to correctly find the
target of each activity transition. Consequently, the constructed
ATG of the obfuscated app will be incomplete.
Implementation: Figure 4 shows a simple example of encoding
the class name of the activity. In line 4, the string is encoded by
reversing the order of characters, “activity_name", which is the
class name of the target activity. It is worth noting that other so-
phisticated string encoding algorithms can be employed to prevent
ATG builders from learning the original string. In line 5, the decod-
ing method is invoked to recover the original string. Furthermore,
if the app specifies the intent receiver using its class name, the
decode variable, a substitution of the original string, will be sent
to the setClassName method (i.e., line 7). Otherwise, the decoded
string will be passed to the Class.forName function (i.e., line 9) to
retrieve the java.lang.Class object of the target activity, which
will be used to specify the target activity of the intent.

5.3 Rewriting Function Call
Design: Locating invocations of activity transition related APIs
is another critical step in building the app’s ATG. Exploiting this
observation, this UI obfuscation approach hides such invocations
to ATG builders by rewriting such function calls through the Java
reflection. Consequently, the constructed ATG of the obfuscated
app will have less edges (or even less nodes) than the correct one.
Implementation: Figure 5 shows an example of rewriting the
function call. In line 5-7, the original call to the startActivity
method is rewritten using the Java reflection. We can also encode
names of activity transition related APIs to make it harder for ATG
builders to locate and analyze such essential function calls.

5.4 Patching App Method
Design: We can also prevent ATG builders from identifying activity
transition related APIs by first removing the relevant code from
the app and then dynamically loading them at runtime. In partic-
ular, we leverage dynamic app patching tools (e.g., tinker [18],
andfix [4], nuwa [13], and amigo [3]) to realize this approach so
that the constructed ATG of the obfuscated app will have less edges

Figure 6: Algorithm for patching app method.
Algorithm 1: Patch method code at runtime.
input :p, the path of the dex file, which is going to be loaded.

c, the context of the app’s Application object.
m, the signature of the method going to be patched.

1 // recover the modified app method
2 Function dynamic_code_loading(c, m):
3 dex = load_patch_file(c, p)
4 parent_classloader = c.getClassLoader()
5 patch_classloader = new ClassLoader(parent_classloader)
6 source_method = load_method(parent_classloader, m)
7 target_method = load_method(patch_classloader, m)
8 if the modified app method is a callback function then
9 replace_method(source_method, target_method)

10 end
11 return

than that of the original app. Note that the app method patching is
not applicable for virtual methods invoked by the Java reflection.
To avoid affecting the functionality of the obfuscated app (i.e., C2),
we conduct extra checking to ensure that patched app methods are
not invoked via the Java reflection.
Implementation: Figure 1 shows the algorithm for dynamically
patching the methods that call activity-transition related APIs.
We first extract the bytecode of such methods from the dex
file and store it in another dex file. In line 3, we load this dex
file by calling the framework API DexFile.loadDex. In line 4-
5, we create a fresh ClassLoader object and take the existing
PathClassLoader instance of the obfuscated app as its parent class
loader. In line 6-10, we retrieve the appmethod to be patched and the
one containing the original bytecode of the target method from the
PathClassLoader instance and the created ClassLoader object,
respectively. Then, we transform the obtained java.lang.Method
objects to their corresponding ArtMethod objects by calling the
FromReflectedMethodmethod declared in the JNIEnv class so that
we can replace the app method loaded by the PathClassLoader
instance with the one loaded by the created ClassLoader object.

As mentioned in §2.2, we cannot dynamically replace the
ArtMethod object of the method that are called by other meth-
ods through Java reflection. More specifically, since the modified
method in the obfuscated app and the corresponding method in
the patch file are loaded by different class loaders, if the method
to be patched is invoked through Java reflection, such a function
call cannot pass the verification conducted by the Android runtime.
To mitigate this problem, we conservatively apply the dynamic
ArtMethod replacement to the callback method in the original APK
(i.e., line 9). In particular, we use DroidRA [30] to check whether or

5

Figure 6: Algorithm for patching app method.

of activity transition related APIs to make it harder for ATG builders
to locate and analyze such essential function calls.

5.4 Patching App Method (PAM)
Design: We can also prevent ATG builders from identifying activity
transition related APIs by first removing the bytecode of methods,
which contain invocations of these APIs, and then dynamically
loading them at runtime. Since ATG builders cannot find activity
transition related APIs in the bytecode of the obfuscated app, the
constructed ATG will have less edges than that of the original app.
We implement this approach using dynamic app patching tools
(e.g., tinker [17], andfix [4], nuwa [12], and amigo [3]).
Implementation: Figure 6 shows the algorithm for dynamically
patching the app methods that call activity transition related APIs.
We first extract the bytecode of such methods from the original
app and store it to a dex file. In line 3, we call the framework
API, DexFile.loadDex, to load this dex file. In line 4-5, we cre-
ate a ClassLoader object and take the existing PathClassLoader
instance of the obfuscated app as its parent class loader, which
ensures the patched method can be executed correctly because the
ClassLoader object can use its parent (i.e., the PathClassLoader
instance) to find the related classes for executing the patched
method. In line 6, we retrieve the appmethod to be patched from the
PathClassLoader instance. Then, in line 7, we get the app method
that contains the original bytecode of the target method from the
created ClassLoader object. Subsequently, in line 8-10, we trans-
form the obtained java.lang.Method objects to the corresponding
ArtMethod objects by calling the FromReflectedMethod method
declared in the JNIEnv class so that we can replace the app method
loaded by the PathClassLoader instance with the one loaded by
the created ClassLoader object to accomplish the patching.

However, it is worth to mention that we cannot replace the
ArtMethod object of the instance method that are called by the
app through the Java reflection at runtime. More specifically, since
the modified method in the obfuscated app and the corresponding
method in the patch file are loaded by different class loaders (i.e., the
existing PathClassLoader instance and the created ClassLoader
instance), if the method to be patched is invoked through the Java
reflection, such a function call cannot pass the verification con-
ducted by the Android runtime. To mitigate this problem, we just
apply the ArtMethod replacement to the callback methods in the
original APK (i.e., line 9). Additionally, we will use DroidRA [36]

1 // Code presented in an Activity.
2 protected void onCreate(∗) {
3 // original code is omitted
4 LinearLayout container =
5 findViewById(R.id.container);
6 TextView tv = new TextView(∗);
7 tv.setText("inject");
8 tv.setTextSize(1); // tiny
9 tv.setTextColor(∗); // transparent
10 container.addView(tv);
11 }

(a) Relevant code snippet.

<LinearLayout
android:id="@+id/container" >
// Original view widgets are omitted
// Following is the injected TextView
<TextView
android:layout_height="∗"
android:layout_width="∗"
android:text="inject"
android:textSize="1sp"
android:textColor="#00000000" />

</LinearLayout>

(b) Modified view hierarchy.

Figure 7: Update view hierarchy.

to check whether or not the modified callback methods will be
invoked by other app methods via the Java reflection.

6 ALTERING RUNTIME VIEW HIERARCHY
To exploitW3, we design 2 ways to make the retrieved runtime view
hierarchies of the obfuscated app distinct from those of the original
app. The first approach (in §6.1) dynamically creates invisible view
components and adds them into original view hierarchies of the app
so that runtime view hierarchies of the obfuscated app will have
more widgets than those of the original app. The second approach
(in §6.2) exploits the limitation of UIAutomator, which can only
capture the view hierarchy of the topmost focused window, by
crafting overlay windows to seize the focus from app windows. In
this case, the retrieved runtime view hierarchies are the layouts of
crafted overlay windows rather than app windows.

6.1 Updating View Hierarchy (UVH)
Design: We dynamically create invisible view components and add
them into original view hierarchies of the app to arbitrarily change
the runtime view hierarchies of the obfuscated app.
Implementation: Figure 7a shows the code snippet, which adds a
newly created invisible TextView to the layout of an app window,
and Figure 7b illustrates the modified runtime view hierarchy. More
specifically, in line 4-5, we retrieve the view container, to which
we inject an invisible TextView widget. In line 6-7, we initialize
the TextView instance and specify its text content. To meet the
invisibility requirement (i.e., C1), in line 8-9, we adjust the size
and the color of the specified text content to make the TextView
widget tiny and transparent. Finally, in line 10, we update the view
hierarchy via adding the created TextView to the view container.

6.2 Misusing Overlay Window (MOW)
Design: We exploit the overlay to seize the window focus from the
app component (e.g., activity) so that the runtime view hierarchies
retrieved by UIAutomator refer to the layout of the overlay rather
than the app window. To achieve this purpose, the overlay window
should be focusable and drawn on top of the device screen. How-
ever, such focused overlay window may interfere with interactions
between the app and the user. For example, key events (e.g., clicking
the BACK button) and touch events (e.g., pressing the screen), which
ought to be handled by concealed app components, are intercepted
by the overlay. To address this issue, we forward intercepted user
events to the proper app window rendered behind the overlay. Note
that MOW is different from UVH because it exploits the vulnera-
bility of UIAutomator to let it obtain the incorrect runtime view
hierarchies rather than modifying the app’s view hierarchies.

UI Obfuscation and Its Effects on
Automated UI Analysis for Android Apps ASE ’20, September 21–25, 2020, Virtual Event, Australia

Focused EditText

Overlay Window

(a) App screenshot.

Overlay Window

(b) View hierarchy of app window.

Overlay Window

(c) View hierarchy of the overlay.

Figure 8: Misuse overlay window.

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

ESEC/FSE ’20, November 8–13, 2020, Sacramento, California, United States Anon.

749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828

1 // Code presented in an Activity.
2 protected void onCreate(∗) {
3 // original code is omitted
4 LinearLayout container =
5 findViewById(R.id.container);
6 TextView tv = new TextView(∗);
7 tv.setText("inject");
8 tv.setTextSize(1); // tiny
9 tv.setTextColor(∗); // transparent
10 container.addView(tv);
11 }

(a) Relevant code snippet.

<LinearLayout
android:id="@+id/container" >
// Original view widgets are omitted
// Following is the injected TextView
<TextView
android:layout_height="∗"
android:layout_width="∗"
android:text="inject"
android:textSize="1sp"
android:textColor="#00000000" />

</LinearLayout>

(b) Modified view hierarchy.
Figure 7: Update view hierarchy.

Algorithm 1: Customize the touch event handler.
input :views, an array includes all app windows’ root views.

params, an array contains all app windows’ layout parameters.
1 Function onTouch(View view, MotionEvent event):
2 fRootView, fView, lRootView = get_focused_view(views, params)
3 imm = InputMethodManager.peekInstance()
4 imm.mCurRootView = fRootView
5 imm.focusIn(fView)
6 return

the view hierarchy of the topmost focused window, by crafting
overlay windows to seize the focus from app windows. In this case,
the retrieved runtime view hierarchies are the layouts of crafted
overlays rather then app windows.

6.1 Updating View Hierarchy
Design: Besides explicitly modifying layout files of the original app
(in §4.1), we can dynamically create invisible view components and
add them into original view hierarchies of the app. Consequently,
the runtime view hierarchies of the obfuscated app will be distinct
from the ones of the original app.
Implementation: Figure 7a shows the code snippet, which adds a
newly created invisible TextView to the layout of an app window,
and Figure 7b illustrates the modified runtime view hierarchy. More
specifically, in line 4-5, we retrieve the view container, to which
we inject an invisible TextView widget. In line 6-7, we initialize
the TextView instance and specify its text content. To meet the
invisibility requirement (i.e., C1), in line 8-9, we adjust the size
and the color of the specified text content to make the TextView
widget tiny and transparent. Finally, in line 10, we update the view
hierarchy via adding the created TextView to the view container.

6.2 Misusing Overlay Window
Design: The overlay window has been abused by adversaries to de-
ceive app users into misidentifying the app [23, 26, 37]. Differently,
we exploit the overlay window to seize the window focus from the
app component (e.g., activity), which lets the runtime view hierar-
chies retrieved by UIAutomator refer to the layout of the crafted
overlay rather than the target app window. To accomplish this task,
the overlay window should be focusable and drawn on top of the
screen. However, such focused overlay window may interfere with
the interactions between the app and the user. For example, the key
events (e.g., clicking the BACK button) and the touch events (e.g.,
pressing the screen), which ought to be handled by the concealed
app components, are intercepted by the overlay window. To address
this issue, we actively forward the intercepted events to the proper
app window rendered behind the overlay.

Overlay Window

(a) App screenshot.

Overlay Window

(b) View hierarchy of app window.

Overlay Window

(c) View hierarchy of the overlay.
Figure 8: Misuse overlay window.

Overlay Window

Figure 9: Algorithm for customizing touch event handler.

Figure 10: Algorithm for customizing key event handler.
Algorithm 2: Customize the key event handler.
input :views, an array includes all app windows’ root views.

params, an array contains all app windows’ layout parameters.
1 Function onKey(*, KeyEvent event):
2 fRootView, fView, lRootView = get_focused_view(views, params)
3 imm = InputMethodManager.peekInstance()
4 if imm.isActive(fView) == true && fView.instanceof(EditText) then
5 if imm.hideSoftInputWindow(*) == true then
6 return
7 end
8 end
9 lRootView.dispatchKeyEvent(keyEvent)

10 return

Implementation: To ensure that the overlay will be drawn on top
of any other app windows, we adjust the window type of the over-
lay to TYPE_PHONE or TYPE_APPLICATION_OVERLAY. An example of
such the overlay window is depicted in Figure 8a. The original view
hierarchy of the app window and the one retrieved by UIAutomator
when the target window is concealed by the overlay are shown in
Figure 8b and 8c, respectively. Obviously, UIAutomator generates
a different result due to our UI obfuscation approach.

Since placing an overlay on top of the app window may block
the common interactions between the covered window and the app
user, we forward the user events intercepted by the overlay to a
proper concealed app window for achieving the invisibility and
non-intrusiveness requirements. More precisely, the touch events
and the key (or the button) events need to be handled.

6

Figure 9: Algorithm for customizing touch event handler.

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

ESEC/FSE ’20, November 8–13, 2020, Sacramento, California, United States Anon.

749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828

1 // Code presented in an Activity.
2 protected void onCreate(∗) {
3 // original code is omitted
4 LinearLayout container =
5 findViewById(R.id.container);
6 TextView tv = new TextView(∗);
7 tv.setText("inject");
8 tv.setTextSize(1); // tiny
9 tv.setTextColor(∗); // transparent
10 container.addView(tv);
11 }

(a) Relevant code snippet.

<LinearLayout
android:id="@+id/container" >
// Original view widgets are omitted
// Following is the injected TextView
<TextView
android:layout_height="∗"
android:layout_width="∗"
android:text="inject"
android:textSize="1sp"
android:textColor="#00000000" />

</LinearLayout>

(b) Modified view hierarchy.
Figure 7: Update view hierarchy.

Algorithm 1: Customize the touch event handler.
input :views, an array includes all app windows’ root views.

params, an array contains all app windows’ layout parameters.
1 Function onTouch(View view, MotionEvent event):
2 fRootView, fView, lRootView = get_focused_view(views, params)
3 imm = InputMethodManager.peekInstance()
4 imm.mCurRootView = fRootView
5 imm.focusIn(fView)
6 return

the view hierarchy of the topmost focused window, by crafting
overlay windows to seize the focus from app windows. In this case,
the retrieved runtime view hierarchies are the layouts of crafted
overlays rather then app windows.

6.1 Updating View Hierarchy
Design: Besides explicitly modifying layout files of the original app
(in §4.1), we can dynamically create invisible view components and
add them into original view hierarchies of the app. Consequently,
the runtime view hierarchies of the obfuscated app will be distinct
from the ones of the original app.
Implementation: Figure 7a shows the code snippet, which adds a
newly created invisible TextView to the layout of an app window,
and Figure 7b illustrates the modified runtime view hierarchy. More
specifically, in line 4-5, we retrieve the view container, to which
we inject an invisible TextView widget. In line 6-7, we initialize
the TextView instance and specify its text content. To meet the
invisibility requirement (i.e., C1), in line 8-9, we adjust the size
and the color of the specified text content to make the TextView
widget tiny and transparent. Finally, in line 10, we update the view
hierarchy via adding the created TextView to the view container.

6.2 Misusing Overlay Window
Design: The overlay window has been abused by adversaries to de-
ceive app users into misidentifying the app [23, 26, 37]. Differently,
we exploit the overlay window to seize the window focus from the
app component (e.g., activity), which lets the runtime view hierar-
chies retrieved by UIAutomator refer to the layout of the crafted
overlay rather than the target app window. To accomplish this task,
the overlay window should be focusable and drawn on top of the
screen. However, such focused overlay window may interfere with
the interactions between the app and the user. For example, the key
events (e.g., clicking the BACK button) and the touch events (e.g.,
pressing the screen), which ought to be handled by the concealed
app components, are intercepted by the overlay window. To address
this issue, we actively forward the intercepted events to the proper
app window rendered behind the overlay.

Overlay Window

(a) App screenshot.

Overlay Window

(b) View hierarchy of app window.

Overlay Window

(c) View hierarchy of the overlay.
Figure 8: Misuse overlay window.

Overlay Window

Figure 9: Algorithm for customizing touch event handler.

Figure 10: Algorithm for customizing key event handler.
Algorithm 2: Customize the key event handler.
input :views, an array includes all app windows’ root views.

params, an array contains all app windows’ layout parameters.
1 Function onKey(*, KeyEvent event):
2 fRootView, fView, lRootView = get_focused_view(views, params)
3 imm = InputMethodManager.peekInstance()
4 if imm.isActive(fView) == true && fView.instanceof(EditText) then
5 if imm.hideSoftInputWindow(*) == true then
6 return
7 end
8 end
9 lRootView.dispatchKeyEvent(keyEvent)

10 return

Implementation: To ensure that the overlay will be drawn on top
of any other app windows, we adjust the window type of the over-
lay to TYPE_PHONE or TYPE_APPLICATION_OVERLAY. An example of
such the overlay window is depicted in Figure 8a. The original view
hierarchy of the app window and the one retrieved by UIAutomator
when the target window is concealed by the overlay are shown in
Figure 8b and 8c, respectively. Obviously, UIAutomator generates
a different result due to our UI obfuscation approach.

Since placing an overlay on top of the app window may block
the common interactions between the covered window and the app
user, we forward the user events intercepted by the overlay to a
proper concealed app window for achieving the invisibility and
non-intrusiveness requirements. More precisely, the touch events
and the key (or the button) events need to be handled.

6

Figure 10: Algorithm for customizing key event handler.

Implementation: To ensure that the overlay will be drawn on top
of any other appwindows, we adjust the window type of the overlay
to TYPE_PHONE or TYPE_APPLICATION_OVERLAY. Figure 8a shows
an example of such overlay window. The original view hierarchy of
the app window and the one retrieved by UIAutomator when the
target window is concealed by the overlay are shown in Figure 8b
and 8c, respectively. Obviously, UIAutomator generates a different
result due to our UI obfuscation approach.

Since placing an overlay on top of the app window may block
common interactions between the covered window and the app
user, we forward user events intercepted by the overlay to the
proper concealed app window for achieving the invisibility and
non-intrusiveness requirements (i.e., C1 and C2). More precisely,
touch events, as well as key (or button) events, need to be handled.

To dispatch intercepted touch events to the covered app win-
dow, we adjust the window size of the overlay to zero and en-
able the FLAG_NOT_TOUCH_MODAL property of the overlay window.
Such configuration allows touch events to pass through the over-
lay, and in most of the cases, the touch events can be handled by
the proper app window. However, if the editable view component

(e.g., EditText) in the app window is going to consume the touch
event, additional effort is required to reconnect the link between
the editable widget and the soft input method. Specifically, we en-
able the FLAG_WATCH_OUTSIDE_TOUCH property of the overlay to
monitor the touch event and customize the touch event handler,
OnTouchListener.onTouch.

Figure 9 shows the algorithm for customizing the touch event
handler registered in the overlay window. It takes in 2 inputs:
views and params, which are retrieved from the mViews field and
the mParams field of the WindowManagerGlobal class, respectively.
Since the instance of WindowManagerGlobal is a singleton, the cor-
responding fields can be accessed through the Java reflection. The
mViews field is an array, containing the root view of each app win-
dow’s view hierarchy, e.g., the topmost FrameLayout in Figure 8b
and 8c. The view containers (i.e., the root views) included in the
mViews are organized according to the time when the windows are
created. More precisely, the root view of the most recently created
window is located at the tail of mViews. The mParams field stores the
layout parameter of each appwindow, and accordingly, the recorded
parameters are ordered depending on the window creation time as
well. Hence, there is a one-on-one mapping relationship between
each element in mViews and mParams.

The onTouch method is the customized touch event handler reg-
istered in the overlay, and its main task is to adjust the improper
binding between the focused view and the soft input method. By
scrutinizing the binding process of the soft input method [9], we no-
tice that, in normal cases, the soft input method will be linked with
the focused view in the focused window. However, since the spe-
cially designed overlay is always the focused window, the focused
view (e.g., the EditText widget in Figure 8a) cannot be connected
with the soft input method because it is included in the app win-
dow, which is concealed by the overlay and does not have the
window focus. To actively rebuild the binding, in line 2, we invoke
the auxiliary method, get_focused_view, to obtain the view that
gets focused, the root view that contains the focused view, and the
last focusable root view in the mViews field (i.e., the last element
of the views parameter). The corresponding results are stored in
variables fView, fRootView, and lRootView, respectively. After ob-
taining such information, in line 4, we set the mCurRootView field
of the InputMethodManager singleton to fRootView, the root view
containing the focused view fView. After that, in line 5, we call
the focusIn method to instruct the InputMethodManger instance
to rebuild the binding. Consequently, the editable widget in the
concealed app can accurately respond the dispatched touch event.

Since the key event will also be received by the focused window,
we customize the key event handler of the overlay to forward
blocked key events to the covered app window. The algorithm is
shown in Figure 10. Note that the inputs and the auxiliary method
(i.e., get_focused_view) of this algorithm are the same as those in
Algorithm 9. The onKey method is the key event handler, and the
event forwarding process consists of 2 steps. First, in line 3-8, the
overlay consumes the BACK button event and hides the activated
soft input method if the focused view component is editable. Second,
in line 9, the dispatchKeyEvent method is invoked to forward
the intercepted key events to the topmost app window, and the
corresponding root view takes the charge of finding the proper
view component to handle such key event.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Hao Zhou, Ting Chen∗ , Haoyu Wang, Le Yu, Xiapu Luo, Ting Wang, and Wei Zhang

1 // Code presented in an Activity.
2 public void onCreate(∗) {
3 setContentView(R.layout.activity_layout); // original code
4 getWindow().addFlags(WindowManager.LayoutParams.FLAG_SECURE);
5 /∗ the remaining original code is omitted ∗/
6 }

(a) Relevant code snippet.

(b) Original app screenshot. (c) Guarded app screenshot.

Figure 11: Prevent app snapshot.

Table 2: Weaknesses of representative studies.

Idx App Analysis Repackaging Detection Automatic Testing

W1 Gator[47] DroidEagle[51],ResDroid[48] N/A

W2 A3E[21],Gator[47] ViewDroid[65],MassVet[27] N/A

W3 N/A RepDroid[64],Soh et al.[49]
GUIRipper[20],Stoat[50]
DroidBot[37],Paladin[38]

W4 N/A Malisa et al.[41] N/A

7 GUARDING APP SCREENSHOT
To exploitW4, we design an approach (PAS) to prevent screenshots
from being captured by the snapshot taker.
Design: We leverage the window property, FLAG_SECURE, to pre-
vent the app’s screenshots from being captured by common snap-
shot takers (e.g., tools [7, 15, 16] built upon the shell command,
screencap, or the framework class, VirtualDisplay). Once the
property is enabled, the visual content of the protected app window
will not be included in the captured snapshot. Consequently, analy-
sis results of runtime screenshot based methods become invalid.
Implementation: Figure 11a shows an example of using the win-
dow property, FLAG_SECURE, to prevent the visual content of an
activity from being presented in the screenshot. In line 4, we
call getWindow to get the corresponding Window instance, and
then invoke addFlags to add the FLAG_SECURE property to the
obtained Window instance. Figure 11b and 11c show the screenshots
taken by scrcpy [15], a popular snapshot taker, before and after
FLAG_SECURE has been enabled, respectively.

8 EVALUATION
We implement 9 basic UI obfuscation approaches in a new tool
named UIObfuscator with 6,143 lines of Java code and 2,633 lines of
Python code. We evaluate the effects of UI obfuscation on represen-
tative automated UI analysis methods for 3 kinds of applications,
including UI centric app analysis, UI based repackaged app detec-
tion, and UI driven app testing, and answer 3 research questions
(i.e., RQ1/2/3). Table 2 summarizes the studies under examination
and their weaknesses. Moreover, we assess the extra overhead intro-
duced by the UI obfuscation approaches and conduct a user survey
to evaluate whether they fulfill the invisibility requirement and the
non-intrusiveness requirement to answer RQ4 and RQ5.

8.1 Data Set
Apps used for evaluation were downloaded from F-Droid [8]. We
filter out some apps according to the following 3 requirements:
∗ R1: The app should be able to be processed by Apktool [6] and
Soot [53] because UIObfuscator is built on top of them.
∗ R2: The app should meet the requirements of automated UI anal-
ysis tools that are used to evaluate UIObfuscator.
∗ R3: The app can run on Android 5.1.1, where we deploy the UI
driven app testing tools. For the ease of exploring the app’s UI states,
its activity transition should not start from the login activity.

Based on these requirements, we randomly select 200 apps to
form the origin APK set. Then, we apply each of UI obfuscation
approaches to these apps and generate 1800 obfuscated apps.

Table 3: The effect on UI centric app analysis.

APK A3E Gator
Set dif fn pwilcox dif fe pwilcox dif fn pwilcox dif fe pwilcox dif fv pwilcox

origin 0.0% 1.0e0 0.0% 1.0e0 0.0% 1.0e0 0.0% 1.0e0 0.0% 1.0e0

MLF 0.0% 1.0e0 0.0% 1.0e0 0.0% 1.0e0 0.0% 1.0e0 +210.4% 1.6e−18

UVH 0.0% 1.0e0 0.0% 1.0e0 0.0% 1.0e0 0.0% 1.0e0 0.0% 1.0e0

IPA +52.5% 2.7e−25 +43.6% 2.7e−25 +31.6% 5.9e−26 +82.2% 1.4e−11 0.0% 1.0e0

ESC -92.8% 7.9e−20 -92.8% 7.1e−20 0.0% 1.0e0 -47.7% 1.5e−11 0.0% 1.0e0

RFC -84.7% 1.4e−19 -85.1% 1.5e−19 0.0% 1.0e0 -48.6% 8.4e−12 0.0% 1.0e0

SLF 0.0% 1.0e0 0.0% 1.0e0 0.0% 1.0e0 0.0% 1.0e0 -52.5% 6.8e−20

PAM -69.1% 9.3e−19 -70.8% 9.0e−19 0.0% 1.0e0 -45.9% 2.6e−11 0.0% 1.0e−5

MOW 0.0% 1.0e0 0.0% 1.0e0 0.0% 1.0e0 0.0% 1.0e0 0.0% 1.0e0

PAS 0.0% 1.0e0 0.0% 1.0e0 0.0% 1.0e0 0.0% 1.0e0 0.0% 1.0e0

8.2 RQ1: How does UI Obfuscation affect UI Centric App
Analysis?

Tools: We select 2 representative open-source UI centric app analy-
sis tools (A3E [21] and Gator [47]) to analyze the obfuscated apps.
A3E performs static bytecode analysis to construct the ATG of the
app. It first locates the APIs related to activity transition, and then
performs data analysis on the Intent objects passed to such APIs
to create ATG nodes and build ATG edges. By treating broadcast
receivers and services as ATG nodes, A3E also considers the con-
nections between these components as ATG edges. Gator not only
constructs the ATG but also recovers the static view hierarchies
of the app. To build the ATG, Gator treats all activities declared
in AndroidManifest.xml as ATG nodes, and adopts an approach
similar as A3E to build ATG edges. To recover the app’s static view
hierarchies, Gator first parses layout files to construct the basic view
hierarchies, and then performs static reference analysis to find the
dynamically generated view components and appends them into
the basic view hierarchies.
Result: Table 3 lists the results. Precisely, di f fn shows the average
ratio of the changed number of ATG nodes. It is calculated via
di f fn = avд(|N ′

i − Ni | ÷ Ni), where Ni and N ′
i separately denote

the number of ATG nodes of the original app and the obfuscated
app. di f fe shows the average ratio of the changed number of ATG
edges. It is calculated via di f fe = avд(|E ′i − Ei | ÷ Ei), where Ei
and E ′i separately denote the number of ATG edges of the original
app and the obfuscated app. di f fv shows the average ratio of the
changed number of view components. It is calculated via di f fv =
avд(|V ′

i −Vi | ÷Vi), whereVi andV ′
i separately denote the number

of view components in recovered view hierarchies of the original
app and the obfuscated app. To assess the statistical confidence

UI Obfuscation and Its Effects on
Automated UI Analysis for Android Apps ASE ’20, September 21–25, 2020, Virtual Event, Australia

of the results, we conduct Wilcoxon signed-rank test [44, 56] on
the number of ATG nodes, ATG edges, and view components of
the obfuscated app and the original app, individually. pwilcox in
Table 3 denotes the p-value of the test. Specifically, if the p-value
is smaller than 0.05, it implies that the distribution of the number
of ATG nodes, ATG edges, or view components of the obfuscated
app is different from that of the original app, which suggests the
constructed ATG or the recovered view hierarchies of the obfuscated
app are totally different from those of the original app.

The results show that ESC, RFC, and PAM, which compromise the
process of constructing the ATG, obviously reduce the number of
nodes and edges included in constructed ATGs of obfuscated apps.
For A3E, more than 69% of ATG nodes and ATG edges of original
apps are excluded in the ATGs of obfuscated apps. Meanwhile, for
Gator, around 45% of ATG edges of original apps are not presented in
the ATGs of obfuscated apps. Since Gator treats activities declared in
the manifest file as ATG nodes, ESC, RFC, and PAM have no impact
on the number of ATG nodes of obfuscated apps because they will
not introduce additional activities.

IPA, which injects an activity to proxy each activity transition
of the original app, introduces 82.2% more edges in the obfuscated
app’s ATG constructed by Gator. Since A3E fails to resolve the
Intent objects indicating the transitions between the proxy ac-
tivity and other app activities, IPA introduces 43.6% more edges in
the obfuscated app’s ATG constructed by A3E.

MLF and SLF, which manipulate the app’s layout files, make the
recovered static view hierarchies of obfuscated apps different from
those of original apps. In particular, we instruct MLF to insert 20
invisible TextView to each app activity’s layout file, which makes
the number of view components in the recovered static view hierar-
chies of obfuscated apps 210.4% times greater than that of original
apps. Meanwhile, SLF replaces each app activity’s layout file with
the one that contains only a LinearLayout widget, which makes
the number of view components in the recovered view hierarchies
of obfuscated apps just 47.5% of the original one. Although Gator
can handle dynamically generated view components, it fails to find
the view containers, to which we insert TextView widgets. Conse-
quently, UVH could not change the recovered view hierarchies.

Answer to RQ1: UI obfuscation approaches, including IPA, ESC,
RFC, and PAM, make the constructed ATGs of obfuscated apps
dramatically different from those of original apps. Moreover,
MLF and SLF make the recovered static view hierarchies of ob-
fuscated apps significantly distinct from those of original apps.

Table 4: The effect on UI based repackaged app detection.

Tool MLF UVH IPA ESC RFC SLF PAM MOW PAS

ViewDroid 100.0% 91.0% 1.8% 7.2% 1.8% 91.0% 1.8% 91.0% 100.0%

RepDroid 68.8% 74.9% 86.2% 86.9% 94.3% 96.3% 86.3% 0.0% 94.4%

8.3 RQ2: How does UI Obfuscation affect UI Based Repack-
aged Apps Detection?

Tools: Although several UI based repackaged app detection sys-
tems [27, 41, 48, 49, 51, 64, 65] have been proposed, only a few
of them are open-source. Hence, we just use ViewDroid [65] and

MLF UVH IPA ESC RFC SLF PAM MOW PAS

0

20

40

60

80

100

si
m

ila
ri

ty
 r

at
e

(%
)

(a) ViewDroid.
MLF UVH IPA ESC RFC SLF PAM MOW PAS

0

20

40

60

80

100

si
m

ila
ri

ty
 r

at
e

(%
)

(b) RepDroid.

Figure 12: The effect on UI based repackaged app detection.

RepDroid [64] for evaluation. ViewDroid performs static bytecode
analysis to build apps’ ATGs, and measures the similarity among
ATGs to identify repackaged apps. RepDroid uses UIAutomator to
get runtime view hierarchies of the app, and analyzes the obtained
view components to explore app activities and build the layout-
group graph (LGG), which represents transitions among different
view hierarchies. Then, it calculates the similarity between the
obfuscated app and the original app according to their LGGs.
Result: Table 4 lists the average similarity between obfuscated apps
and original apps, and Figure 12 shows the boxplots of these results.
We can see that IPA, ESC, RFC, and PAM dramatically decrease
the similarity calculated by ViewDroid, because these UI obfusca-
tion approaches make the constructed ATGs of obfuscated apps
significantly different from those of original apps. Since other UI
obfuscation approaches do not change ATGs of original apps, they
will not affect the detection results of ViewDroid.

Moreover, MLF, UVH, MOW reduce the similarity measured by
RepDroid, because these approaches make the runtime view hi-
erarchies of obfuscated apps distinct from those of original apps.
Since the retrieved runtime view hierarchies of the apps obfuscated
by MOW are totally different from the ones of original apps, the
similarity drops to 0%. As MLF and UVH just modify the runtime
view hierarchies of original apps to a certain extent, the similarity
percentage only decreases to 69% and 75%, respectively. Other UI
obfuscation approaches will not change runtime view hierarchies
of original apps, and thus they do not affect the results of RepDroid.

Answer to RQ2: UI obfuscation approaches, including IPA, ESC,
RFC, and PAM, will compromise the analysis results of activity
transition for repackaged app detection. Meanwhile, MLF, UVH,
and MOW, can make the obfuscated app evade the runtime view
hierarchy based repackaged app detection.

8.4 RQ3: How does UI Obfuscation affect UI Driven App
Testing?

Tools: Existing app testing tools use 2 methods to traverse an app’s
activities: (1) random event generation based methods; (2) runtime
view hierarchy based methods. The former (e.g., Monkey [11] and
Sapienz [42]) explores the app without considering view compo-
nents in the current app window, and thus we exclude them in
this study. Since some runtime view hierarchy based tools (e.g.,
GUIRipper [20] and Dynodroid [39]) are only available on quite
early Android versions (e.g., systems before Android 4.0), we ex-
clude them due to the compatibility issue [55]. Therefore, we use

ASE ’20, September 21–25, 2020, Virtual Event, Australia Hao Zhou, Ting Chen∗ , Haoyu Wang, Le Yu, Xiapu Luo, Ting Wang, and Wei Zhang

Table 5: The effect on UI driven app testing.

APK Stoat DroidBot Paladin
Set dif fact pwilcox dif fact pwilcox dif fact pwilcox

origin 0.0% 1.0e0 0.0% 1.0e0 0.0% 1.0e0

MLF -5.4% 0.13e0 0.0% 1.0e0 -10.8% 0.07e0

UVH -4.2% 0.55e0 0.0% 1.0e0 -7.9% 0.57e0

IPA 0.0% 1.0e0 0.0% 1.0e0 -4.6% 0.27e0

ESC +1.8% 0.72e0 -9.0% 0.57e0 -10.8% 0.16e0

RFC +4.4% 0.61e0 -6.3% 0.55e0 -6.7% 0.13e0

SLF +4.2% 0.55e0 0.0% 1.0e0 -2.1% 0.55e0

PAM -2.4% 0.94e0 -12.3% 0.13e0 0.0% 1.0e0

MOW -71.2% 0.01e0 -67.2% 0.01e0 -71.5% 0.01e0

PAS 0.0% 1.0e0 0.0% 1.0e0 -2.1% 0.57e0

origin MLF UVH IPA ESC RFC SLF PAM MOW PAS
0.5

1.0

1.5

2.0

2.5

fil
e

si
ze

 (
M

B)

1.87 1.87 1.87 1.87
2.01

1.86 1.88

2.05

1.88 1.87

0.87
0.99

0.87 0.88 0.87 0.87
0.95

0.87 0.87 0.87

0.50

0.55

0.60

0.65

0.70

ti
m

e
(s

)

0.6878
0.7009 0.7018

0.6902 0.6955 0.6990 0.7022 0.7008 0.7000 0.6928

code size resource size launch time

Figure 13: Overhead of UI obfuscation approaches.

Stoat [50],DroidBot [37], and Paladin [38] in this evaluation. They
use the runtime view hierarchies retrieved by UIAutomator to find
a particular view component, to which the next simulated user
event is sent. Moreover, we set their timeout value to half an hour.
Result: Table 5 lists the results. Precisely, di f fact shows the av-
erage ratio of explored activities. It is calculated via di f fact =
avд(|A′

i −Ai | ÷ Ai), where Ai and A′
i separately denote the ex-

plored activities of the original app and the obfuscated app.
We find that MOW can obstruct the activity exploration con-

ducted by Stoat, DroidBot, and Paladin. More specifically, since the
obtained view hierarchies refer to the layouts of the overlay win-
dows, no valid view components can guide the generation of the
next user event, and thus such tools stuck at the app’s entry activity.

Answer to RQ3: MOW prevents the runtime view hierarchy
based app testing tools from recognizing the view components
in the app windows. Hence, no matter how long such tools run,
only the entry activity of the app will be explored.

8.5 RQ4: How is the Overhead Induced by UI Obfuscation?
We evaluate the additional code size and delay introduced by UIOb-
fuscator. Note that directly comparing the APK size of the obfus-
cated app with that of the original app may be inaccurate because
in some cases the former may be even smaller than that of the
latter. The reason may be that the APK packaging tool (aapt [1])
or the APK alignment utility (zipalign [19]) is more applicable for
obfuscated apps. Thus, we unzip APK files and calculate the average
size of bytecode (dex files) and resource files. Then, we compare
the average code size and resource size of obfuscated apps with

those of original apps to determine the size expansion caused by
our UI obfuscation approaches. To measure the introduced delay,
we use ADB [2] to launch each app in the origin and the obfuscated
APK data sets for 10 times and calculate the average launch time.
We notice that the launch time for an app in 10 tests will not quite
vary from each other. Thus, launching each app 10 times is enough.
Afterwards, we compare the average launch time of obfuscated
apps with that of original apps to estimate the additional overhead.
Result: The results shown in Figure 13 illustrate that our UI obfus-
cation approaches only introduce small size expansions and little
launch delays. Specifically, PAM introduces the biggest code size
expansion, which is 0.17 megabytes on average (9.1% of original
apps’ average code size), and MLF causes the largest resource size
expansion, which is 0.12 megabytes on average (13.8% of origi-
nal apps’ average resource size). Moreover, SLF incurs the longest
launch delay, which is around 15 milliseconds on average.

Answer to RQ4: UIObfuscator only introduces small size ex-
pansions and little launch delays to the obfuscated app.

8.6 RQ5: Do Our UI Obfuscation Approaches Fulfill the In-
visibility and the Non-intrusiveness Requirements?

To answer this research question, we conduct a user survey on 25
students, all of whom are familiar with Android system. In detail,
we give each participant the same 5 randomly selected original apps
and their corresponding obfuscated apps (50 apps in total). Then,
we ask the participants to test the apps using 2 emulators, one for
running each original app and another for running the obfuscated
app. Specifically, once the participants performed an operation on
the original app, we ask them to perform the same operation on the
obfuscated app and observe whether the UIs and the functionality
of the obfuscated app are the same as those of the original app.
After the participants finish the test on a pair of apps, we ask them
to answer the question: to what extent (100%/75%/50%/25%/0%) the
UIs and the functionality of the pair of apps are the same.
Result: All participants reported that the UIs and the functionality
of the apps obfuscated by our UI obfuscation approaches are totally
(100%) the same as those of their corresponding original apps. It
suggests that our UI obfuscation approaches are transparent to app
users and will not obstruct user interactions with obfuscated apps.

Answer to RQ5: All our UI obfuscation approaches meet the
requirements of invisibility and non-intrusiveness.

9 DISCUSSION AND THREAT TO VALIDITY
UI obfuscation is different from code obfuscation, because it aims at
making obfuscated apps circumvent UI centric analysis, while code
obfuscation cannot achieve this purpose in most of cases. However,
an app may employ UI obfuscation and code obfuscation together to
evade both UI centric and code centric analysis. Moreover, we can
adopt code obfuscation (e.g., packing [57, 58, 66] and encryption)
to protect the implementations of our UI obfuscation approaches
from being analyzed and evaded. Note that, although we use code
obfuscation techniques to implement ESC, RFC, and PAM, such

UI Obfuscation and Its Effects on
Automated UI Analysis for Android Apps ASE ’20, September 21–25, 2020, Virtual Event, Australia

work cannot be done by general code obfuscation tools, such as
ProGuard [14], which just obfuscates names of app classes, methods,
and fields.

Our work is valuable for both the research community and the
industry community. Our observations (in §3) and insights obtained
from the experiments (in §8) inform researchers the limitations
of existing automated UI analysis methods. Our UI obfuscation
approaches (in §4, §5, §6, §7) can be adopted by app developers
to protect their apps (e.g., bank apps [29]) from being inspected
by adversaries. For example, apps can employ MOW to prevent
adversaries from using UI driven app testing tools to fuzz them.

The main threat to the external validity of our work is the repre-
sentativeness of the APKs and the tools, which are used to evaluate
the effectiveness of our UI obfuscation approaches. Specifically, we
only assess the impacts of UI obfuscation on a limited number of
representative UI centric app analysis frameworks, UI based repack-
aged app detection systems, and UI driven app testing tools. To
reduce this threat, in future work, we will use UIObfuscator to ob-
fuscate more apps and then use these obfuscated apps to evaluate
more tools that conduct automated UI analysis for Android apps.

Threats to our work’s internal validity come from 2 aspects.
On one hand, the non-determinism of the evaluated runtime view
hierarchy based tools affect the internal validity. To mitigate it, we
may apply these tools to analyzing each app under study multiple
times. On the other hand, the time threshold on executing UI driven
app testing tools influences the internal validity. To reduce the
threat, in future work, we will increase the default timeout for a
large-scale study.

10 RELATEDWORK
10.1 App Obfuscation
Although recent work studied app obfuscation techniques [33, 34,
40, 54], none of them examined UI obfuscation. Maiorca et al. [40]
evaluated the performance of anti-malware solutions and found that
most of them are resilient to trivial code obfuscation techniques but
fail to handle advanced protection mechanisms. Faruki et al. [33]
evaluated the effectiveness of existing app deobfuscation tools.
They found that existing tools (e.g., Androguard [5]) fail to decode
real-word apps. Hammad et al. [34] evaluated the effectiveness
of anti-malware products against code obfuscation and found that
obfuscation techniques can negatively affect the detection results of
anti-malware products. Wang et al. [54] thoroughly characterized
the obfuscated iOS apps by using statistical language models.

10.2 UI Centric App Analysis
According to the analysis target, we divide UI centric app analy-
sis methods into 4 types. First, static layout based methods [47]
analyze static view hierarchies of the app, which are constructed
by parsing the app’s layout files. Thus, these methods are vulnera-
ble to MLF and SLF. Second, static activity transition based meth-
ods [21, 23, 28, 59, 60] analyze ATG of the app, which is built by
performing static analysis on the app’s bytecode to identify transi-
tion relationships among app activities. Accordingly, these methods
are vulnerable to IPA, ESC, RFC, and PAM. Third, runtime view hier-
archy based methods [22, 30, 31, 43, 63] analyzes the app’s runtime
view hierarchies, which are obtained by UIAutomator. Thus, such

methods are vulnerable to UVH and MOW. Fourth, runtime screen-
shot based methods [25, 26, 30, 31, 67] analyze the app’s runtime
screenshots. Thus, these methods suffer from PAS. Meanwhile, since
these methods always use UI testing tools (e.g., Stoat [50]) to drive
the app for getting screenshots, they are vulnerable to MOW.

10.3 UI Based Repackaged App Detection
Existing UI based repackaged app detection systems can be divided
into 4 categories. First, static layout based systems [27, 51] char-
acterize an app using its static view hierarchies. More specifically,
they first resolve the layout files to construct static view hierar-
chies of the app. Then, they calculate the similarity of different
apps via comparing their static view hierarchies. Hence, they suf-
fer from UI obfuscation approaches, MLF and SLF. Second, static
activity transition based systems [48, 61, 65] quantify the similar-
ity between a pair of apps via comparing their ATGs. Hence, they
suffer from UI obfuscation approaches, IPA, ESC, RFC, and PAM.
Third, runtime view hierarchy based systems [41, 49, 64] leverage
UIAutomator [18] to retrieve the app’s runtime view hierarchies,
which are further used to measure the app similarity. However,
such methods suffer from UI obfuscation approaches, MLF, UVH,
and MOW. Fourth, runtime app screenshot based systems [41] cap-
ture the app’s snapshots, and then calculate the similarity among
screenshots to determine whether the visual experience of an app
is similar with another one. However, such methods suffer from
the UI obfuscation method, PAS.

10.4 UI Driven App Testing
UI driven app testing tools [20, 37–39, 50] usually analyze runtime
view hierarchies retrieved by UIAutomator to decide the proper
view widget, to which the next simulated user event is sent. There-
fore, they will be affected by the UI obfuscation method, MOW.

11 CONCLUSION
We conduct the first systematic investigation on UI obfuscation
for Android apps and its effect on automated UI analysis methods.
After pointing out the weaknesses of existing automated UI analysis
methods, we design 9 UI obfuscation approaches and develop UIOb-
fuscator, a new tool for automatically obfuscating Android apps’
UI-related elements.We apply UIObfuscator to public available apps,
and feed obfuscated apps to 3 kinds of tools that rely on automated
UI analysis. The experimental results show that UI obfuscation can
severely impact the performance of such tools while introducing
little additional overhead to obfuscated apps. Our work sheds light
on the limitations of existing automated UI analysis methods and
enlightens developers about UI obfuscation approaches.

12 ACKNOWLEDGEMENT
We thank the anonymous reviewers for their helpful comments.
This research is partially supported by the Hong Kong RGC
Projects (No. 152279/16E, 152223/17E, CityU C1008-16G) and the
National Natural Science Foundation of China (No. 61872057,
61702045, 61672297) and National Key R&D Program of China
(2018YFB0804100, 2019YFB2101704) and the National Science Foun-
dation under Grant (No. 1953893, 1953813, and 1951729).

ASE ’20, September 21–25, 2020, Virtual Event, Australia Hao Zhou, Ting Chen∗ , Haoyu Wang, Le Yu, Xiapu Luo, Ting Wang, and Wei Zhang

REFERENCES
[1] 2020. AAPT. https://developer.android.com/studio/command-line/aapt2.
[2] 2020. ADB. https://developer.android.com/studio/command-line/adb.
[3] 2020. Amigo. https://github.com/eleme/Amigo.
[4] 2020. AndFix. https://github.com/alibaba/AndFix.
[5] 2020. androguard. https://github.com/androguard/androguard.
[6] 2020. Apktool. https://ibotpeaches.github.io/Apktool/.
[7] 2020. CastScreen. https://github.com/JonesChi/CastScreen.
[8] 2020. F-Droid. https://f-droid.org.
[9] 2020. InputMethodManager. http://androidxref.com/8.0.0_r4/xref/frameworks/

base/core/java/android/view/inputmethod/InputMethodManager.java.
[10] 2020. Instance Method. https://docs.oracle.com/javase/specs/jls/se7/html/jls-

8.html.
[11] 2020. Monkey. https://developer.android.com/studio/test/monkey.
[12] 2020. Nuwa. https://github.com/jasonross/Nuwa.
[13] 2020. Overview - App resources. https://developer.android.com/guide/topics/

resources/providing-resources.
[14] 2020. ProGuard. https://www.guardsquare.com/en/products/proguard.
[15] 2020. scrcpy. https://github.com/Genymobile/scrcpy.
[16] 2020. ScreenCapture. https://github.com/googlesamples/android-ScreenCapture.
[17] 2020. Tinker. https://github.com/Tencent/tinker.
[18] 2020. UIAutomator. https://developer.android.com/training/testing/ui-automator.

html.
[19] 2020. zipalign. https://developer.android.com/studio/command-line/zipalign.
[20] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore

De Carmine, and Atif M. Memon. 2012. Using GUI Ripping for Automated
Testing of Android Applications. In Proc. ASE.

[21] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and Depth-first Exploration
for Systematic Testing of Android Apps. In Proc. OOPSLA.

[22] Carlos Bernal-Cárdenas, Kevin Moran, Michele Tufano, Zichang Liu, Linyong
Nan, Zhehan Shi, and Denys Poshyvanyk. 2019. Guigle: A GUI Search Engine
for Android Apps. In Proc. ICSE.

[23] Ravi Bhoraskar, Seungyeop Han, Jinseong Jeon, Tanzirul Azim, Shuo Chen,
Jaeyeon Jung, Suman Nath, Rui Wang, and David Wetherall. 2014. Brahmastra:
Driving Apps to Test the Security of Third-Party Components. In Proc. USENIX
Security.

[24] Antonio Bianchi, Jacopo Corbetta, Luca Invernizzi, Yanick Fratantonio, Christo-
pher Kruegel, and Giovanni Vigna. 2015. What the app is that? deception and
countermeasures in the android user interface. In Proc. S&P.

[25] Chunyang Chen, Ting Su, Guozhu Meng, Zhenchang Xing, and Yang Liu. 2018.
From UI design image to GUI skeleton: a neural machine translator to bootstrap
mobile GUI implementation. In Proc. ICSE.

[26] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhu, Guo-
qiang Li, and Jinshui Wang. 2020. Unblind Your Apps: Predicting Natural-
Language Labels for Mobile GUI Components by Deep Learning. In Proc. ICSE.

[27] Kai Chen, PengWang, Yeonjoon Lee, XiaoFengWang, Nan Zhang, Heqing Huang,
Wei Zou, and Peng Liu. 2015. Finding Unknown Malice in 10 Seconds: Mass
Vetting for New Threats at the Google-Play Scale. In Proc. USENIX Security.

[28] Sen Chen, Lingling Fan, Chunyang Chen, Ting Su, Wenhe Li, Yang Liu, and Lihua
Xu. 2019. StoryDroid: Automated Generation of Storyboard for Android Apps.
In Proc. ICSE.

[29] Sen Chen, Lingling Fan, Guozhu Meng, Ting Su, Minhui Xue, Yinxing Xue, Yang
Liu, and Lihua Xu. 2020. An Empirical Assessment of Security Risks of Global
Android Banking Apps. In Proc. ICSE.

[30] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A Mobile App Dataset
for Building Data-Driven Design Applications. In Proc. UIST.

[31] Biplab Deka, Zifeng Huang, and Ranjitha Kumar. 2016. ERICA: Interaction
Mining Mobile Apps. In Proc. UIST.

[32] Yue Duan, Mu Zhang, Abhishek Vasisht Bhaskar, Heng Yin, Xiaorui Pan, Tongxin
Li, Xueqiang Wang, and X Wang. 2018. Things you may not know about android
(un)packers: a systematic study based on whole-system emulation. In Proc. NDSS.

[33] Parvez Faruki, Hossein Fereidooni, Vijay Laxmi, Mauro Conti, and Manoj Gaur.
2016. Android Code Protection via Obfuscation Techniques: Past, Present and
Future Directions. arXiv preprint arXiv:1611.10231 (2016).

[34] MahmoudHammad, Joshua Garcia, and SamMalek. 2018. A Large-scale Empirical
Study on the Effects of Code Obfuscations on Android Apps and Anti-malware
Products. In Proc. ICSE.

[35] Jinho Jung, Hong Hu, David Solodukhin, Daniel Pagan, KyuHyung Lee, and
Taesoo Kim. 2019. Fuzzification: Anti-Fuzzing Techniques. In Proc. USENIX
Security.

[36] Li Li, Tegawendé F. Bissyandé, Damien Octeau, and Jacques Klein. 2016. DroidRA:
Taming Reflection to Support Whole-program Analysis of Android Apps. In Proc.
ISSTA.

[37] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. DroidBot: A
Lightweight UI-guided Test Input Generator for Android. In Proc. ICSE.

[38] Yun Ma, Yangyang Huang, Ziniu Hu, Xusheng Xiao, and Xuanzhe Liu. 2019.
Paladin: Automated Generation of Reproducible Test Cases for Android Apps. In
Proc. HotMobile.

[39] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An Input
Generation System for Android Apps. In Proc. FSE.

[40] Davide Maiorca, Davide Ariu, Igino Corona, Marco Aresu, and Giorgio Giacinto.
2015. Stealth attacks: An extended insight into the obfuscation effects on android
malware. Computers & Security 51 (2015), 16–31.

[41] Luka Malisa, Kari Kostiainen, Michael Och, and Srdjan Capkun. 2016. Mobile
application impersonation detection using dynamic user interface extraction. In
Proc. ESORICS.

[42] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective Automated
Testing for Android Applications. In Proc. ISSTA.

[43] Tuan Anh Nguyen and Christoph Csallner. 2015. Reverse Engineering Mobile
Application User Interfaces with REMAUI. In Proc. ASE.

[44] John W. Pratt. 1959. Remarks on zeros and ties in the Wilcoxon signed rank
procedures. J. Amer. Statist. Assoc. (1959).

[45] Chuangang Ren, Peng Liu, and Sencun Zhu. 2017. WindowGuard: Systematic
Protection of GUI Security in Android. In Proc. NDSS.

[46] Chuangang Ren, Yulong Zhang, Hui Xue, Tao Wei, and Peng Liu. 2015. Towards
Discovering and Understanding Task Hijacking in Android. In Proc. USENIX Sec.

[47] Atanas Rountev and Dacong Yan. 2014. Static Reference Analysis for GUI Objects
in Android Software. In Proc. CGO.

[48] Yuru Shao, Xiapu Luo, Chenxiong Qian, Pengfei Zhu, and Lei Zhang. 2014. To-
wards a scalable resource-driven approach for detecting repackaged android
applications. In Proc. ACSAC.

[49] Charlie Soh, Hee Beng Kuan Tan, Yauhen Leanidavich Arnatovich, and Lipo
Wang. 2015. Detecting clones in android applications through analyzing user
interfaces. In Proc. ICPC.

[50] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang
Pu, Yang Liu, and Zhendong Su. 2017. Guided, Stochastic Model-based GUI
Testing of Android Apps. In Proc FSE.

[51] Mingshen Sun, Mengmeng Li, and John Lui. 2015. DroidEagle: Seamless detection
of visually similar Android apps. In Proc. WiSec.

[52] Y. Tang, Y. Sui, H. Wang, X. Luo, H. Zhou, and Z. Xu. 2020. All Your App Links
are Belong to Us: Understanding the Threats of Instant Apps based Attacks. In
Proc. ESEC/FSE.

[53] Raja Vallée-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam, Patrice Pominville,
and Vijay Sundaresan. 2000. Optimizing Java bytecode using the Soot framework:
Is it feasible?. In Proc. CC.

[54] Pei Wang, Qinkun Bao, Li Wang, Shuai Wang, Zhaofeng Chen, Tao Wei, and
DinghaoWu. 2018. Software Protection on the Go: A Large-scale Empirical Study
on Mobile App Obfuscation. In Proc. ICSE.

[55] Wenyu Wang, Dengfeng Li, Wei Yang, Yurui Cao, Zhenwen Zhang, Yuetang
Deng, and Tao Xie. 2018. An Empirical Study of Android Test Generation Tools
in Industrial Cases. In Proc. ASE.

[56] Frank Wilcoxon. 1945. Individual comparisons by ranking methods. Break-
throughs in statistics (1945).

[57] Lei Xue, Xiapu Luo, Le Yu, Shuai Wang, and Dinghao Wu. 2017. Adaptive
unpacking of Android apps. In Proc. ICSE.

[58] L. Xue, H. Zhou, X. Luo, L. Yu, D. Wu, Y. Zhou, and X. Ma. 2020. PackerGrind:
An Adaptive Unpacking System for Android Apps. IEEE Transactions on Software
Engineering (2020).

[59] Shengqian Yang, Dacong Yan, Haowei Wu, Yan Wang, and Atanas Rountev. 2015.
Static Control-flow Analysis of User-driven Callbacks in Android Applications.
In Proc. ICSE.

[60] Shengqian Yang, Hailong Zhang, HaoweiWu, YanWang, Dacong Yan, and Atanas
Rountev. 2015. Static Window Transition Graphs for Android. In Proc. ASE.

[61] Shengqian Yang, Hailong Zhang, HaoweiWu, YanWang, Dacong Yan, and Atanas
Rountev. 2015. Static window transition graphs for android. In Proc. ASE.

[62] L. Yu, J. Chen, H. Zhou, X. Luo, and K. Liu. 2018. Localizing Function Errors in
Mobile Apps with User Reviews. In Proc. DSN.

[63] Shengcheng Yu, Chunrong Fang, Yang Feng, Wenyuan Zhao, and Zhenyu Chen.
2019. LIRAT: Layout and Image Recognition Driving Automated Mobile Testing
of Cross-Platform. In Proc. ASE).

[64] Shengtao Yue, Weizan Feng, Jun Ma, Yanyan Jiang, Xianping Tao, Chang Xu, and
Jian Lu. 2017. RepDroid: an automated tool for Android application repackaging
detection. In Proc. ICPC.

[65] Fangfang Zhang, Heqing Huang, Sencun Zhu, Dinghao Wu, and Peng Liu. 2014.
ViewDroid: Towards obfuscation-resilient mobile application repackaging detec-
tion. In Proc. WiSec.

[66] Yueqian Zhang, Xiapu Luo, andHaoyang Yin. 2015. DexHunter: toward extracting
hidden code from packed Android applications. In Proc. ESORICS.

[67] Dehai Zhao, Zhenchang Xing, Chunyang Chen, Xiwei Xu, Liming Zhu, Guoqiang
Li, and Jinshui Wang. 2020. Seenomaly: Vision-Based Linting of GUI Animation
Effects Against Design-Dont́ Guidelines. In Proc. ICSE.

https://developer.android.com/studio/command-line/aapt2
https://developer.android.com/studio/command-line/adb
https://github.com/eleme/Amigo
https://github.com/alibaba/AndFix
https://github.com/androguard/androguard
https://ibotpeaches.github.io/Apktool/
https://github.com/JonesChi/CastScreen
https://f-droid.org
http://androidxref.com/8.0.0_r4/xref/frameworks/base/core/java/android/view/inputmethod/InputMethodManager.java
http://androidxref.com/8.0.0_r4/xref/frameworks/base/core/java/android/view/inputmethod/InputMethodManager.java
https://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html
https://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html
https://developer.android.com/studio/test/monkey
https://github.com/jasonross/Nuwa
https://developer.android.com/guide/topics/resources/providing-resources
https://developer.android.com/guide/topics/resources/providing-resources
https://www.guardsquare.com/en/products/proguard
https://github.com/Genymobile/scrcpy
https://github.com/googlesamples/android-ScreenCapture
https://github.com/Tencent/tinker
https://developer.android.com/training/testing/ui-automator.html
https://developer.android.com/training/testing/ui-automator.html
https://developer.android.com/studio/command-line/zipalign

	Abstract
	1 Introduction
	2 Background
	2.1 Asset Management in Android Apps
	2.2 Method Execution in Android Runtime
	2.3 Window Organization in Android

	3 Overview of Our UI Obfuscation Methods for Apps
	3.1 Weaknesses in Automated UI Analysis Methods
	3.2 Basic UI Obfuscation Approaches

	4
	4.1 Modifying Layout File (MLF)
	4.2 Substituting Layout File (SLF)

	5 Distorting Constructed ATG
	5.1 Injecting Proxy Activity (IPA)
	5.2 Encoding String Constant (ESC)
	5.3 Rewriting Function Call (RFC)
	5.4 Patching App Method (PAM)

	6 Altering Runtime View Hierarchy
	6.1 Updating View Hierarchy (UVH)
	6.2 Misusing Overlay Window (MOW)

	7 Guarding App Screenshot
	8 Evaluation
	8.1 Data Set
	8.2 RQ1: How does UI Obfuscation affect UI Centric App Analysis?
	8.3 RQ2: How does UI Obfuscation affect UI Based Repackaged Apps Detection?
	8.4 RQ3: How does UI Obfuscation affect UI Driven App Testing?
	8.5 RQ4: How is the Overhead Induced by UI Obfuscation?
	8.6 RQ5: Do Our UI Obfuscation Approaches Fulfill the Invisibility and the Non-intrusiveness Requirements?

	9 Discussion and Threat To Validity
	10 Related Work
	10.1 App Obfuscation
	10.2 UI Centric App Analysis
	10.3 UI Based Repackaged App Detection
	10.4 UI Driven App Testing

	11 Conclusion
	12 Acknowledgement
	References

